Skip to main content

Advertisement

Log in

Measurement of the relative differential cross sections of the \(^{1} H(n,el)\) reaction in the neutron energy range from 6 MeV to 52 MeV

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The relative differential cross sections of the \(^{1}\hbox {H}(n, \,el)\) reaction have been measured at the China Spallation Neutron Source (CSNS) Back-n white neutron source. A low-density polyethylene sample and a graphite foil were prepared for the foreground and background measurements, respectively. The charged particles were detected using the \({\vartriangle }E-E\) telescope array of the Light-charged Particle Detector Array (LPDA) system. With 10 \({\vartriangle }E-E\) telescopes, the relative differential cross sections of the \(^{1}\hbox {H}(n, \,el)\) reaction were obtained from 70\(^{\circ }\) to 160\(^{\circ }\) in the center-of-mass system in the neutron energy (\(E_{\mathrm{n}}\)) range from 6.14 to 52.48 MeV (23 energy points). The present work was the first experiment using the \({\vartriangle }E-E\) telescope array of the LPDA system at CSNS. The present results are in good agreement with previous measurements, evaluations and theoretical calculations. Furthermore, this work is the first measurement in the 6.52 MeV \(\le E_{\mathrm{n}} \le \) 9.09 MeV, 10.57 MeV \(\le E_{\mathrm{n}} \le \) 12.43 MeV, and 18.05 MeV \(\le \) \(E_{\mathrm{n}} \le \) 20.05 MeV regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The final results have been presented in Appendix A in this paper. The origin data (\(\sim \)1 TB, mainly signal files) are too big to upload or deliver them.]

References

  1. R. Machleidt et al., J. Phys. G 27, R69 (2001)

    Article  Google Scholar 

  2. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  3. R.A. Arndt et al., Phys. Rev. C 76, 025209 (2007)

    Article  ADS  Google Scholar 

  4. N. Boukharouba et al., Phys. Rev. C 82, 014001 (2010)

    Article  ADS  Google Scholar 

  5. K. Kondo et al., Nucl. Instrum. Methods A 568, 723 (2006)

    Article  ADS  Google Scholar 

  6. C.G. Montgomery et al., Phys. Rev. 50, 490 (1936)

    Article  ADS  Google Scholar 

  7. A.D. Carlson et al., Nucl. Data Sheets 148, 143 (2018)

    Article  ADS  Google Scholar 

  8. EXFOR, https://www-nds.iaea.org/exfor/exfor.htm/

  9. INS DAC Services [SAID Program], http://gwdac.phys.gwu.edu/

  10. T. Nakamura, J. Phys. Soc. Jpn. 15, 1359 (1960)

    Article  ADS  Google Scholar 

  11. F. Cambou, Centre d’ Etudes Nucleaires report series, No. 2002 (1961)

  12. E. Greiner et al., Ann. Phys. 471, 354 (1965)

    Article  Google Scholar 

  13. W.T. Morton, Proc. Phys. Soc. 91, 899 (1967)

    Article  ADS  Google Scholar 

  14. I. Basar, Conf. Light Nuclei Symp., Brela, 1967, Vol. II, p.867 (Brela, 1967)

  15. A. Suhami et al., Phys. Lett. B 24, 173 (1967)

    Article  ADS  Google Scholar 

  16. A. Paulsen et al., Phys. Let. B 29(9), 562 (1969)

    Article  ADS  Google Scholar 

  17. J. Arvieux et al., Phys. Lett. B 32, 468 (1970)

    Article  ADS  Google Scholar 

  18. S. Shirato et al., J. Phys. Soc. Jpn. 36, 331 (1974)

    Article  ADS  Google Scholar 

  19. J. Vincour, et al., Conf. 2. Symp. on Neutron Induced Reactions, Smolenice, 1979 p. 119 (Smolenice, 1979)

  20. T.B. Ryves et al., Ann. Nucl. Energy 17(12), 657 (1990)

    Article  Google Scholar 

  21. W. Buerkle et al., Few-Body Syst. 22(1), 11 (1997)

    Article  ADS  Google Scholar 

  22. N. Boukharouba et al., Phys. Rev. C 65, 014004 (2001)

    Article  ADS  Google Scholar 

  23. N.V. Kornilov et al., Nucl. Sci. Eng. 194, 335 (2020)

    Article  Google Scholar 

  24. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  25. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  26. K. Shibata et al., Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  27. A.J. Koning et al., J. Korean Phys. Soc. 59(2), 1057 (2011)

    Article  ADS  Google Scholar 

  28. S. Zabrodskay et al., Ser. Nucl. Const. 1–2, 3 (2007)

    Google Scholar 

  29. FENDL, https://www-nds.iaea.org/fendl/

  30. Z.G. Ge et al., J. Korean Phys. Soc. 59(2), 1052 (2011)

    Article  ADS  Google Scholar 

  31. ENDF, https://www-nds.iaea.org/exfor/endf.htm/

  32. E.R. Flynn et al., Phys. Rev. 128, 1268 (1962)

    Article  ADS  Google Scholar 

  33. J.P. Scanlon et al., Nucl. Phys. 41, 401 (1963)

    Article  Google Scholar 

  34. E. Tagliaferri Jr., Dissert. Abstracts B (Sciences) 27, 2085 (1966)

    Google Scholar 

  35. J.L. Romero et al., Phys. Rev. C 2, 2134 (1970)

    Article  ADS  Google Scholar 

  36. L.N. Rothenberg, Phys. Rev. C 1, 1226 (1970)

    Article  ADS  Google Scholar 

  37. T.G. Masterson, Phys. Rev. C 6, 690 (1972)

    Article  ADS  Google Scholar 

  38. T.W. Burrows, Phys. Rev. C 7, 1306 (1973)

    Article  ADS  Google Scholar 

  39. T.C. Montgomery et al., Phys. Rev. C 16, 499 (1977)

    Article  ADS  Google Scholar 

  40. J.A. Cookson et al., EPJ Web Conf. 299, 365 (1978)

    Google Scholar 

  41. M. Drosg, Los Alamos Scientific Lab. Reports, No.7269-MS (1978)

  42. M. Drosg et al., Nucl. Instrum. Methods 160, 143 (1979)

    Article  ADS  Google Scholar 

  43. A. Bol et al., Phys. Rev. C 32(1), 308 (1985)

    Article  ADS  Google Scholar 

  44. G. Fink et al., Nucl. Phys. A 518, 561 (1990)

    Article  ADS  Google Scholar 

  45. S. Benck et al., Nucl. Phys. A 615, 220 (1997)

    Article  ADS  Google Scholar 

  46. H. Jing et al., Nucl. Instrum. Methods A 621, 91 (2010)

    Article  ADS  Google Scholar 

  47. Q. An et al., JINST 12, 07022 (2017)

    Google Scholar 

  48. Y. Chen et al., Eur. Phys. J. A 55, 115 (2019)

    Article  ADS  Google Scholar 

  49. H. Bai et al., Chin. Phys. C 44(1), 014003 (2020)

    Article  ADS  Google Scholar 

  50. L. Zhang et al., Appl. Radiat. Isot. 132, 212 (2018)

    Article  Google Scholar 

  51. B. Qi et al., Nucl. Instrum. Methods A 957, 163407 (2020)

    Article  Google Scholar 

  52. W. L. Huang, et al., 7th Int. Beam Instrumentation Conf. Vol. II, p.122 (China, 2018)

  53. W. Jiang et al., Nucl. Instrum. Methods A 973, 164126 (2020)

    Article  Google Scholar 

  54. R. Fan et al., Nucl. Instrum. Methods A 981, 164343 (2020)

    Article  Google Scholar 

  55. H. Jiang et al., Chin. Phys. C 43(12), 124002 (2019)

    Article  ADS  Google Scholar 

  56. MSI-8, https://www.mesytec.com/products/datasheets/MSI-8.pdf/

  57. P. Eraerds et al., Opt. Express 15, 14539 (2007)

    Article  ADS  Google Scholar 

  58. B. He et al., Chin. Phys. C 41, 016104 (2017)

    Article  ADS  Google Scholar 

  59. SRIM, https://www.srim.org/

  60. Z. Cui et al., EPJ Web Conf. 239, 01039 (2020)

    Article  Google Scholar 

  61. Scattering theory (Page 9), http://atlas.physics.arizona.edu/~shupe/Indep_Studies_2015/Notes_Goethe_Univ/L4_Scattering_Basic.pdf

  62. R.L. Workman et al., Phys. Rev. C 94, 065203 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the operation crew of the CSNS Back-n white neutron source. Prof. Zhenpeng Chen from Tsinghua University is appreciated for beneficial discussions. The present work is financially supported by the National Key R&D Program of China (No. 2016YFA0401604) and the National Natural Science Foundation of China (No. 11775006).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Guohui Zhang.

Additional information

Communicated by Navin Alahari.

Haoyu Jiang and Wei Jiang contributed equally to this work.

Appendix A: Results of the relative differential cross sections of the \(^{1} \hbox {H}(n,\,el)\) reaction

Appendix A: Results of the relative differential cross sections of the \(^{1} \hbox {H}(n,\,el)\) reaction

See Table 4 and Fig. 12.

Table 4 The relative differential cross sections \(\sigma _{E_{\mathrm{bin}} ,\theta _{\mathrm{c}.\hbox {m}.} }^{\mathrm{re},(n,\, el),\hbox {c. m}.} \) of the \(^{1}\hbox {H}(n, \,el)\) reaction in the center-of-mass reference system
Fig. 12
figure 12figure 12figure 12figure 12

The present relative differential cross sections of the \(^{1}\hbox {H}(n, \,el)\) reaction compared with existing results of evaluations [8], measurements since 1960 [29] and recent SM-16 and WF-16 theoretical calculations [9, 62]. The relative cross sections have been multiplied by a normalizing coefficient using the data from the JENDL-4.0/HE-2015 library [24] as standard

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Jiang, W., Cui, Z. et al. Measurement of the relative differential cross sections of the \(^{1} H(n,el)\) reaction in the neutron energy range from 6 MeV to 52 MeV. Eur. Phys. J. A 57, 6 (2021). https://doi.org/10.1140/epja/s10050-020-00313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00313-7

Navigation