Skip to main content

Advertisement

Log in

An Overview on the Complexity of OCT4: at the Level of DNA, RNA and Protein

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

OCT4 plays critical roles in self-renewal and pluripotency maintenance of embryonic stem cells, and is considered as one of the main stemness markers. It also has pivotal roles in early stages of embryonic development. Most studies on OCT4 have focused on the expression and function of OCT4A, which is the biggest isoform of OCT4 known so far. Recently, many studies have shown that OCT4 has various transcript variants, protein isoforms, as well as pseudogenes. Distinguishing the expression and function of these variants and isoforms is a big challenge in expression profiling studies of OCT4. Understanding how OCT4 is functioning in different contexts, depends on knowing of where and when each of OCT4 transcripts, isoforms and pseudogenes are expressed. Here, we review OCT4 known transcripts, isoforms and pseudogenes, as well as its interactions with other proteins, and emphasize the importance of discriminating each of them in order to understand the exact function of OCT4 in stem cells, normal development and development of diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Arid3a:

AT-rich interactive domain-containing protein 3A

Asf1a:

Anti-Silencing Function 1A

BLAST:

Basic local alignment search tool

c-MYC:

Cellular-Myelocytomatosis

CTD:

N-transactivation domain

ChIP:

Chromatin Immunopercipitation

Cdy1:

Chromodomain Y-Linked 1

DNA:

Deoxyribonucleic acid

Dppa5:

Developmental Pluripotency Associated 5

Dnmt3b:

DNA-methyltransferase 3 beta

Dax1:

Dosage-sensitive sex reversal

Dpf2:

Double PHD Fingers 2

ESC:

Embryonic stem cell

ESRRB:

Estrogen Related Receptor Beta

Fbxo15:

F-Box Protein 15

HTMase:

Histone demethylase

H3K9me3:

Histon 3 Lysine 9 three methylation

HCC:

Hepatocellular carcinoma

Hells:

Helicase, Lymphoid Specific

Hdac1:

Histone deacetylase 1

IRES:

Internal ribosome entry site

KLF4:

Kruppel-like factor 4

Lefty1:

Left-Right Determination Factor 1

Lig3:

DNA NA Ligase 3

LSD1:

Lysine-specific histone demethylase 1

Msh2:

MutS homolog 2

MTA1:

Metastasis-associated protein 1

NTD:

N-transactivation domain

Nac1:

Nucleus accumbens-associated protein 1

NurD:

Ncleosome remodeling and deacetylase

OCT4:

Octamer transcription factor 4

Otx2:

Orthodenticle Homeobox 2

Pit-1a:

Pituitary-specific positive transcription factor 1

pg:

Pseudogene

Phc1:

Polyhomeotic-like protein 1

Pnkp:

Polynucleotide Kinase 3’-Phosphatase

Prkdc:

Protein Kinase

DNA:

Activated, Catalytic Subunit

PTMs:

Post translational modifications

PGCs:

Primordial Germ Cells

RNA:

Ribonucleic acid

RA:

Retinoic acid

NT-2:

NTERA-2

RT-qPCR:

Reverse transcription-quantitative Polymerase Chain Reaction

RPA1:

Replication protein A1

Rbbp7:

RB Binding Protein 7

Rcor2:

REST Corepressor 2

SOX2:

SRY-box transcription factor 2

SNP:

Single nucleotide polymorphism

SINE:

Short interespersed nuclear repetitive DNA element

Spp1:

Secreted Phosphoprotein 1;

Sall1:

Spalt Like Transcription Factor 1

Sp1:

Specificity protein 1

SWI/SNF:

SWItch/Sucrose Non-Fermentable

Sf1:

Splicing factor 1

TSS:

Transcription start site

TF:

Transcription factor

TE:

Transposable element

Tcfcp2l1:

Transcription Factor CP2 Like 1

TGF-b:

Transforming growth factor beta

UCSC:

University of California Santa Cruz

UTF1:

Undifferentiated Embryonic Cell Transcription Factor 1

Up1:

Uridine Phosphorylase 1

VSELs:

Very small embryonic-like stem cells

WT1:

Wilm’s tumor 1

MEF-2:

Myocyte enhancer factor-2

Wnt:

Wingless-related integration site

Xrcc1:

X-ray repair cross-complementing protein 1

yy1:

Yin Yang 1

Zfp:

Zinc finger protein

Zfp15:

Zinc finger protein 15

References

  1. Martin, G. R. (1981). Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638.

    Article  CAS  Google Scholar 

  2. Thomson, J. A., et al. (1998). Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  3. Chambers, I., & Tomlinson, S. R. (2009). The Transcriptional Foundation of Pluripotency. Development, 136(14), 2311–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schoorlemmer, J., Jonk, L., Shen, S., van Puijenbroek, A., Feijen, A., & Kruijer, W. (1995). Regulation of Oct-4 Gene Expression During Differentiation of EC cells. Molecular Biology Reports, 21(3), 129–140.

    Article  CAS  PubMed  Google Scholar 

  5. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Schöler, H., & Smith, A. (1998). Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4. Cell, 95(3), 379–391.

    Article  CAS  PubMed  Google Scholar 

  6. Matin, M. M., Walsh, J. R., Gokhale, P. J., Draper, J. S., Bahrami, A. R., Morton, I., Moore, H. D., & Andrews, P. W. (2004). Specific Knockdown of Oct4 and β2-Microglobulin Expression by RNA Interference in Human Embryonic Stem Cells and Embryonic Carcinoma Cells. Stem Cells, 22(5), 659–668.

    Article  CAS  PubMed  Google Scholar 

  7. Zangrossi, S., Marabese, M., Broggini, M., Giordano, R., D'Erasmo, M., Montelatici, E., Intini, D., Neri, A., Pesce, M., Rebulla, P., & Lazzari, L. (2007). Oct-4 Expression in Adult Human Differentiated Cells Challenges its Role as a Pure Stem Cell Marker. Stem Cells, 25(7), 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  8. Liedtke, S., Stephan, M., & Kögler, G. (2008). Oct4 Expression Revisited: Potential Pitfalls for Data Misinterpretation in Stem Cell Research. Biological Chemistry, 389(7), 845–850.

    Article  CAS  PubMed  Google Scholar 

  9. Trosko, J. E. (2006). From Adult Stem Cells to Cancer Stem Cells: Oct-4 Gene, Cell–Cell Communication, and Hormones During Tumor Promotion. Annals of the New York Academy of Sciences, 1089(1), 36–58.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, X., & Dai, J. (2010). Concise Review: Isoforms of OCT4 Contribute to the Confusing Diversity in Stem Cell Biology. Stem Cells, 28(5), 885–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liedtke, S., Enczmann, J., Waclawczyk, S., Wernet, P., & Kögler, G. (2007). Oct4 and its Pseudogenes Confuse Stem Cell Research. Cell Stem Cell, 1(4), 364–366.

    Article  CAS  PubMed  Google Scholar 

  12. Baralle, F. E., & Giudice, J. (2017). Alternative Splicing as a Regulator of Development and Tissue Identity. Nature Reviews Molecular Cell Biology, 18(7), 437–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheetham, S. W., Faulkner, G. J., & Dinger, M. E. (2020). Overcoming challenges and dogmas to understand the functions of pseudogenes. Nature Reviews Genetics, 21(3), 191–201.

    Article  CAS  PubMed  Google Scholar 

  14. Takeda, J., Seino, S., & Bell, G. I. (1992). Human Oct3 Gene Family: cDNA Sequences, Alternative Splicing, Gene Organization, Chromosomal Location, and Expression at low Levels in Adult Tissues. Nucleic Acids Research, 20(17), 4613–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammachi, F., Morrison, G. M., Sharov, A. A., Livigni, A., Narayan, S., Papapetrou, E. P., O'Malley, J., Kaji, K., Ko, M. S. H., Ptashne, M., & Brickman, J. M. (2012). Transcriptional Activation by Oct4 is Sufficient for the Maintenance and Induction of Pluripotency. Cell Reports, 1(2), 99–109.

    Article  CAS  PubMed  Google Scholar 

  16. Atlasi, Y., Mowla, S. J., Ziaee, S. A. M., Gokhale, P. J., & Andrews, P. W. (2008). OCT4 Spliced Variants are Differentially Expressed in Human Pluripotent and Nonpluripotent Cells. Stem Cells, 26(12), 3068–3074.

    Article  CAS  PubMed  Google Scholar 

  17. Gao, Y., Wang, X., Han, J., Xiao, Z., Chen, B., Su, G., & Dai, J. (2010). The Novel OCT4 Spliced Variant OCT4B1 can Generate Three Protein Isoforms by Alternative Splicing into OCT4B. Journal of Genetics and Genomics, 37(7), 461–465.

    Article  CAS  PubMed  Google Scholar 

  18. Poursani, E. M., et al. (2017). OCT4B2, a Novel Alternative Spliced Variant of OCT4, is Significantly Upregulated Under Heat-Stress Condition and Downregulated in Differentiated Cells. Tumor Biology, 39(10), 1010428317724280.

    Article  PubMed  CAS  Google Scholar 

  19. Poursani, E. M., et al. (2017). A Novel Variant of OCT4 Entitled OCT4B3 is Expressed in Human Bladder Cancer and Astrocytoma Cell Lines. Avicenna Journal of Medical Biotechnology, 9(3), 142.

    PubMed  PubMed Central  Google Scholar 

  20. Poursani, E. M., Mehravar, M., Soltani, B. M., & Mowla, S. J. (2017). Novel Variant of OCT4B4 is Differentially Expressed in Human Embryonic Stem and Embryonic Carcinoma Cells. Gene, 627, 369–372.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X., Zhao, Y., Xiao, Z., Chen, B., Wei, Z., Wang, B., Zhang, J., Han, J., Gao, Y., Li, L., Zhao, H., Zhao, W., Lin, H., & Dai, J. (2009). Alternative Translation of OCT4 by an Internal Ribosome Entry Site and its Novel Function in Stress Response. Stem Cells, 27(6), 1265–1275.

    Article  CAS  PubMed  Google Scholar 

  22. Malakootian, M., Mirzadeh Azad, F., Naeli, P., Pakzad, M., Fouani, Y., Taheri Bajgan, E., Baharvand, H., & Mowla, S. J. (2017). Novel Spliced Variants of OCT4, OCT4C and OCT4C1, with Distinct Expression Patterns and Functions in Pluripotent and Tumor Cell Lines. European Journal of Cell Biology, 96(4), 347–355.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, F.-Q., Misra, Y., Li, D. B., Wadsworth, M. P., Krag, D., Weaver, D., Tessitore, J., Li, D. W., Zhang, G., Tian, Q., & Buss, K. (2018). Differential Expression of Oct3/4 in Human Breast Cancer and Normal Tissues. International Journal of Oncology, 52(6), 2069–2078.

    CAS  PubMed  Google Scholar 

  24. Cauffman, G., Liebaers, I., van Steirteghem, A., & van de Velde, H. (2006). POU5F1 Isoforms Show Different Expression Patterns in Human Embryonic Stem Cells and Preimplantation Embryos. Stem Cells, 24(12), 2685–2691.

    Article  CAS  PubMed  Google Scholar 

  25. Herr, W., & Cleary, M. A. (1995). The POU domain: Versatility in Transcriptional Regulation by a Flexible two-in-one DNA-Binding Domain. Genes & Development, 9(14), 1679–1693.

    Article  CAS  Google Scholar 

  26. Sturm, R. A., & Herr, W. (1988). The POU Domain is a Bipartite DNA-Binding Structure. Nature, 336(6199), 601–604.

    Article  CAS  PubMed  Google Scholar 

  27. Brehm, A., Ohbo, K., & Schöler, H. (1997). The Carboxy-Terminal Transactivation Domain of Oct-4 Acquires Cell Specificity Through the POU Domain. Molecular and Cellular Biology, 17(1), 154–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poursani, E. M., Mehravar, M., Shahryari, A., Mowla, S. J., & Mohammad Soltani, B. (2017). Alternative Splicing Generates Different 5′ UTRs in OCT4B Variants. Avicenna journal of medical biotechnology, 9(4), 201–204.

    PubMed  PubMed Central  Google Scholar 

  29. Gao, J., Li, W. X., Feng, S. Q., Yuan, Y. S., Wan, D. F., Han, W., & Yu, Y. (2008). A Protein–Protein Interaction Network of Transcription Factors Acting During Liver Cell Proliferation. Genomics, 91(4), 347–355.

    Article  CAS  PubMed  Google Scholar 

  30. Rizzino, A. (2013). Concise Review: The Sox2-Oct4 Connection: Critical Players in a much Larger Interdependent Network Integrated at Multiple Levels. Stem Cells, 31(6), 1033–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van den Berg, D. L., et al. (2010). An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells. Cell Stem Cell, 6(4), 369–381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pardo, M., Lang, B., Yu, L., Prosser, H., Bradley, A., Babu, M. M., & Choudhary, J. (2010). An Expanded Oct4 Interaction Network: Implications for Stem Cell Biology, Development, and Disease. Cell Stem Cell, 6(4), 382–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van den Berg, D. L., et al. (2008). Estrogen-Related Receptor Beta Interacts with Oct4 to Positively Regulate Nanog Gene Expression. Molecular and Cellular Biology, 28(19), 5986–5995.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Liu, X., Huang, J., Chen, T., Wang, Y., Xin, S., Li, J., Pei, G., & Kang, J. (2008). Yamanaka Factors Critically Regulate the Developmental Signaling Network in Mouse Embryonic Stem Cells. Cell Research, 18(12), 1177–1189.

    Article  CAS  PubMed  Google Scholar 

  35. Loh, Y.-H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W. H., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B., & Ng, H. H. (2006). The Oct4 and Nanog Transcription Network Regulates Pluripotency in Mouse Embryonic Stem Cells. Nature Genetics, 38(4), 431–440.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong, E., Orlov, Y. L., Zhang, W., Jiang, J., Loh, Y. H., Yeo, H. C., Yeo, Z. X., Narang, V., Govindarajan, K. R., Leong, B., Shahab, A., Ruan, Y., Bourque, G., Sung, W. K., Clarke, N. D., Wei, C. L., & Ng, H. H. (2008). Integration of External Signaling Pathways with the core Transcriptional Network in Embryonic Stem Cells. Cell, 133(6), 1106–1117.

    Article  CAS  PubMed  Google Scholar 

  37. Ivanova, N., Dobrin, R., Lu, R., Kotenko, I., Levorse, J., DeCoste, C., Schafer, X., Lun, Y., & Lemischka, I. R. (2006). Dissecting Self-Renewal in Stem Cells with RNA Interference. Nature, 442(7102), 533–538.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, X., Zhang, J., Wang, T., Esteban, M. A., & Pei, D. (2008). Esrrb Activates Oct4 Transcription and Sustains Self-Renewal and Pluripotency in Embryonic Stem Cells. Journal of Biological Chemistry, 283(51), 35825–35833.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Y. T. (2001). The metabolic and molecular bases of inherited disease. Glycogen storage diseases, 1521–1551.

  40. Niakan, K. K., Davis, E. C., Clipsham, R. C., Jiang, M., Dehart, D. B., Sulik, K. K., & McCabe, E. R. B. (2006). Novel Role for the Orphan Nuclear Receptor Dax1 in Embryogenesis, Different from Steroidogenesis. Molecular Genetics and Metabolism, 88(3), 261–271.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells. Cell, 132(6), 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  42. Malleshaiah, M., Padi, M., Rué, P., Quackenbush, J., Martinez-Arias, A., & Gunawardena, J. (2016). Nac1 Coordinates a Sub-Network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation. Cell Reports, 14(5), 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  43. Jinawath, N., Vasoontara, C., Yap, K. L., Thiaville, M. M., Nakayama, K., Wang, T. L., & Shih, I. M. (2009). NAC-1, a Potential Stem Cell Pluripotency Factor, Contributes to Paclitaxel Resistance in Ovarian Cancer Through Inactivating Gadd45 Pathway. Oncogene, 28(18), 1941–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakayama, K., Nakayama, N., Davidson, B., Sheu, J. J. C., Jinawath, N., Santillan, A., Salani, R., Bristow, R. E., Morin, P. J., Kurman, R. J., Wang, T. L., & Shih, I. M. (2006). A BTB/POZ Protein, NAC-1, is Related to Tumor Recurrence and is Essential for Tumor Growth and Survival. Proceedings of the National Academy of Sciences, 103(49), 18739–18744.

    Article  CAS  Google Scholar 

  45. Spengler, D., & Hoffmann, A. (2019). Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Frontiers in Genetics, 10, 682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Roberts, C. W., & Orkin, S. H. (2004). The SWI/SNF Complex—Chromatin and Cancer. Nature Reviews Cancer, 4(2), 133–142.

    Article  CAS  PubMed  Google Scholar 

  47. Magliulo, D., Bernardi, R., & Messina, S. (2018). Lysine-Specific Demethylase 1A as a Promising Target in Acute Myeloid Leukemia. Frontiers in Oncology, 8, 255.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pan, X., Cang, X., Dan, S., Li, J., Cheng, J., Kang, B., Duan, X., Shen, B., & Wang, Y. J. (2016). Site-specific Disruption of the Oct4/Sox2 Protein Interaction Reveals Coordinated Mesendodermal Differentiation and the Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 291(35), 18353–18369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duan, G., & Walther, D. (2015). The roles of post-translational modifications in the context of protein interaction networks. PLoS Computational Biology, 11(2), e1004049.

  50. Deribe, Y. L., Pawson, T., & Dikic, I. (2010). Post-Translational Modifications in Signal Integration. Nature Structural & Molecular Biology, 17(6), 666–672.

    Article  CAS  Google Scholar 

  51. Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science, 327(5968), 1000–1004.

  52. Consortium, U. (2010). The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Research, 38(suppl_1), D142–D148.

    Article  CAS  Google Scholar 

  53. Brumbaugh, J., Hou, Z., Russell, J. D., Howden, S. E., Yu, P., Ledvina, A. R., Coon, J. J., & Thomson, J. A. (2012). Phosphorylation Regulates Human OCT4. Proceedings of the National Academy of Sciences, 109(19), 7162–7168.

    Article  CAS  Google Scholar 

  54. Spelat, R., Ferro, F., & Curcio, F. (2012). Serine 111 Phosphorylation Regulates OCT4A Protein Subcellular Distribution and Degradation. Journal of Biological Chemistry, 287(45), 38279–38288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abulaiti, X., Zhang, H., Wang, A., Li, N., Li, Y., Wang, C., du, X., & Li, L. (2017). Phosphorylation of Threonine343 is Crucial for OCT4 Interaction with SOX2 in the Maintenance of Mouse Embryonic Stem Cell Pluripotency. Stem Cell Reports, 9(5), 1630–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bae, K. B., Yu, D. H., Lee, K. Y., Yao, K., Ryu, J., Lim, D. Y., Zykova, T. A., Kim, M. O., Bode, A. M., & Dong, Z. (2017). Serine 347 Phosphorylation by JNKs Negatively Regulates OCT4 Protein Stability in Mouse Embryonic Stem Cells. Stem Cell Reports, 9(6), 2050–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, Y., Guo, Z., Wu, H., Wang, X., Yang, L., Shi, X., et al. (2012). SUMOylation represses Nanog expression via modulating transcription factors Oct4 and Sox2. PLoS One, 7(6), e39606.

  58. Kerscher, O., Felberbaum, R., & Hochstrasser, M. (2006). Modification of Proteins by Ubiquitin and Ubiquitin-Like Proteins. Annual Review of Cell and Developmental Biology, 22, 159–180.

    Article  CAS  PubMed  Google Scholar 

  59. Constable, S., Lim, J. M., Vaidyanathan, K., & Wells, L. (2017). O-GlcNAc Transferase Regulates Transcriptional Activity of Human Oct4. Glycobiology, 27(10), 927–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cho, Y., Kang, H. G., Kim, S. J., Lee, S., Jee, S., Ahn, S. G., Kang, M. J., Song, J. S., Chung, J. Y., Yi, E. C., & Chun, K. H. (2018). Post-translational Modification of OCT4 in Breast Cancer Tumorigenesis. Cell Death and Differentiation, 25(10), 1781–1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharov, A. A., Masui, S., Sharova, L. V., Piao, Y., Aiba, K., Matoba, R., Xin, L., Niwa, H., & Ko, M. S. H. (2008). Identification of Pou5f1, Sox2, and Nanog Downstream Target Genes with Statistical Confidence by Applying a Novel Algorithm to Time Course Microarray and Genome-wide Chromatin Immunoprecipitation Data. BMC Genomics, 9(1), 269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. King, H. W., & Klose, R. J. (2017). The Pioneer Factor OCT4 Requires the Chromatin Remodeller BRG1 to Support Gene Regulatory Element Function in Mouse Embryonic Stem Cells. Elife, 6, e22631.

    Article  PubMed  PubMed Central  Google Scholar 

  63. KRISHNAN, R. B., Jamry, I., & Chaplin, D. D. (1995). Feature Mapping of the HLA Class I Region: Localization of thePOU5F1andTCF19Genes. Genomics, 30(1), 53–58.

    Article  CAS  PubMed  Google Scholar 

  64. Guillaudeux, T., Mattel, M. G., Depetris, D., le Bouteiller, P., & Pontarotti, P. (1993). In situ Hybridization Localizes the Human OTF3 to Chromosome 6p21. 3→ p22 and OTF3L to 12p13. Cytogenetic and Genome Research, 63(4), 212–214.

    Article  CAS  Google Scholar 

  65. Yang, W., Ng, P., Zhao, M., Wong, T. K. F., Yiu, S. M., & Lau, Y. (2008). Promoter-sharing by Different Genes in Human Genome–CPNE1 and RBM12 Gene Pair as an Example. BMC Genomics, 9(1), 456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., Brehm, A., Ohbo, K., Gross, M., Hübner, K., & Schöler, H. R. (1996). Germline Regulatory Element of Oct-4 Specific for the Totipotent Cycle of Embryonal Cells. Development, 122(3), 881–894.

    Article  CAS  PubMed  Google Scholar 

  67. Yoshimizu, T., Sugiyama, N., de Felice, M., Yeom, Y. I., Ohbo, K., Masuko, K., Obinata, M., Abe, K., Scholer, H. R., & Matsui, Y. (1999). Germline-Specific Expression of the Oct-4/green Fluorescent Protein (GFP) Transgene in Mice. Development, Growth & Differentiation, 41(6), 675–684.

    Article  CAS  Google Scholar 

  68. Gillich, A., Bao, S., Grabole, N., Hayashi, K., Trotter, M. W. B., Pasque, V., Magnúsdóttir, E., & Surani, M. A. (2012). Epiblast Stem Cell-Based System Reveals Reprogramming Synergy of Germline Factors. Cell Stem Cell, 10(4), 425–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okazawa, H., Okamoto, K., Ishino, F., Ishino-Kaneko, T., Takeda, S., Toyoda, Y., Muramatsu, M., & Hamada, H. (1991). The oct3 gene, a gene for an Embryonic Transcription Factor, is Controlled by a Retinoic Acid Repressible Enhancer. The EMBO Journal, 10(10), 2997–3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Minucci, S., Botquin, V., Yeom, Y. I., Dey, A., Sylvester, I., Zand, D. J., Ohbo, K., Ozato, K., & Scholer, H. R. (1996). Retinoic Acid-Mediated Down-Regulation of Oct3/4 Coincides with the loss of Promoter Occupancy in vivo. The EMBO Journal, 15(4), 888–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yang, H. M., Do, H. J., Oh, J. H., Kim, J. H., Choi, S. Y., Cha, K. Y., Chung, H. M., & Kim, J. H. (2005). Characterization of Putative Cis-regulatory Elements that Control the Transcriptional Activity of the Human Oct4 Promoter. Journal of Cellular Biochemistry, 96(4), 821–830.

    Article  CAS  PubMed  Google Scholar 

  72. Hattori, N., Nishino, K., Ko, Y. G., Hattori, N., Ohgane, J., Tanaka, S., & Shiota, K. (2004). Epigenetic Control of Mouse Oct-4 Gene Expression in Embryonic Stem Cells and Trophoblast Stem Cells. Journal of Biological Chemistry, 279(17), 17063–17069.

    Article  CAS  PubMed  Google Scholar 

  73. Poursani, E. M., Mehravar, M., & Trosko, J. E. (2016). Microrna-1285 might potentially regulate OCT4 gene expression by direct targeting of its promoter. Journal of Evolving Stem Cell Research, 1(1), 10.

  74. Janowski, B. A., Younger, S. T., Hardy, D. B., Ram, R., Huffman, K. E., & Corey, D. R. (2007). Activating Gene Expression in Mammalian Cells with Promoter-Targeted Duplex RNAs. Nature Chemical Biology, 3(3), 166–173.

    Article  CAS  PubMed  Google Scholar 

  75. Place, R. F., Li, L. C., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). MicroRNA-373 Induces Expression of Genes with Complementary Promoter Sequences. Proceedings of the National Academy of Sciences, 105(5), 1608–1613.

    Article  CAS  Google Scholar 

  76. Akpa, M. M., Iglesias, D. M., Chu, L. L., Cybulsky, M., Bravi, C., & Goodyer, P. R. (2015). Wilms Tumor Suppressor, WT1, Suppresses Epigenetic Silencing of the β-catenin gene. Journal of Biological Chemistry, 290(4), 2279–2288.

    Article  CAS  PubMed  Google Scholar 

  77. Wu, G., & Schöler, H. R. (2014). Role of Oct4 in the Early Embryo Development. Cell Regeneration, 3(1), 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lander, E. S., et al. (2001). Erratum: Initial Sequencing and Analysis of the Human Genome: International Human Genome Sequencing Consortium (nature (2001) 409 (860-921)). Nature, 412(6846), 565–566.

    CAS  Google Scholar 

  79. Deininger, P. (2011). Alu Elements: Know the SINEs. Genome Biology, 12(12), 236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sorek, R., Ast, G., & Graur, D. (2002). Alu-containing Exons are Alternatively Spliced. Genome Research, 12(7), 1060–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, L.-L., & Yang, L. (2017). ALUternative Regulation for Gene Expression. Trends in Cell Biology, 27(7), 480–490.

    Article  CAS  PubMed  Google Scholar 

  82. Morales-Hernández, A., González-Rico, F. J., Román, A. C., Rico-Leo, E., Alvarez-Barrientos, A., Sánchez, L., Macia, Á., Heras, S. R., García-Pérez, J. L., Merino, J. M., & Fernández-Salguero, P. M. (2016). Alu Retrotransposons Promote Differentiation of Human Carcinoma Cells Through the Aryl Hydrocarbon Receptor. Nucleic Acids Research, 44(10), 4665–4683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Makałowski, W., Mitchell, G. A., & Labuda, D. (1994). Alu Sequences in the Coding Regions of mRNA: A Source of Protein Variability. Trends in Genetics, 10(6), 188–193.

    Article  PubMed  Google Scholar 

  84. Sela, N., Mersch, B., Gal-Mark, N., Lev-Maor, G., Hotz-Wagenblatt, A., & Ast, G. (2007). Comparative Analysis of Transposed Element Insertion within Human and Mouse Genomes Reveals Alu's Unique Role in Shaping the Human Transcriptome. Genome Biology, 8(6), R127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Athanasiadis, A., Rich, A., & Maas, S. (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biology, 2(12), e391.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Morse, D. P., Aruscavage, P. J., & Bass, B. L. (2002). RNA Hairpins in Noncoding Regions of Human Brain and Caenorhabditis Elegans mRNA are Edited by Adenosine Deaminases that act on RNA. Proceedings of the National Academy of Sciences, 99(12), 7906–7911.

    Article  CAS  Google Scholar 

  87. Pain, D., Chirn, G. W., Strassel, C., & Kemp, D. M. (2005). Multiple Retropseudogenes from Pluripotent Cell-specific gene Expression Indicates a Potential Signature for Novel Gene Identification. Journal of Biological Chemistry, 280(8), 6265–6268.

    Article  CAS  PubMed  Google Scholar 

  88. Jez, M., Ambady, S., Kashpur, O., Grella, A., Malcuit, C., Vilner, L., et al. (2014). Expression and differentiation between OCT4A and its pseudogenes in human ESCs and differentiated adult somatic cells. PloS One, 9(2), e89546.

  89. Scarola, M., et al. (2015). Epigenetic silencing of Oct4 by a complex containing SUV39H1 and Oct4 pseudogene lncRNA. Nature Communications, 6(1), 1–13.

    Article  Google Scholar 

  90. Zhao, S., Yuan, Q., Hao, H., Guo, Y., Liu, S., Zhang, Y., Wang, J., Liu, H., Wang, F., Liu, K., Ling, E. A., & Hao, A. (2011). Expression of OCT4 Pseudogenes in Human Tumours: Lessons from Glioma and Breast Carcinoma. The Journal of Pathology, 223(5), 672–682.

    Article  CAS  PubMed  Google Scholar 

  91. Suo, G., Han, J., Wang, X., Zhang, J., Zhao, Y., Zhao, Y., & Dai, J. (2005). Oct4 Pseudogenes are Transcribed in Cancers. Biochemical and Biophysical Research Communications, 337(4), 1047–1051.

    Article  CAS  PubMed  Google Scholar 

  92. Poursani, E. M., Soltani, B. M., & Mowla, S. J. (2016). Differential expression of OCT4 pseudogenes in pluripotent and tumor cell lines. Cell Journal (Yakhteh), 18(1), 28.

  93. Wang, L., Guo, Z. Y., Zhang, R., Xin, B., Chen, R., Zhao, J., Wang, T., Wen, W. H., Jia, L. T., Yao, L. B., & Yang, A. G. (2013). Pseudogene OCT4-pg4 Functions as a Natural Micro RNA Sponge to Regulate OCT4 Expression by Competing for miR-145 in Hepatocellular Carcinoma. Carcinogenesis, 34(8), 1773–1781.

    Article  CAS  PubMed  Google Scholar 

  94. Bai, M., et al. (2015). OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncology Reports, 33(4), 1745–1752.

    Article  CAS  PubMed  Google Scholar 

  95. Wu, G., & Schöler, H. R. (2014). Role of Oct4 in the Early Embryo Development. Cell Regeneration, 3(1), 1–10.

    Article  CAS  Google Scholar 

  96. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very Small Embryonic-Like Stem Cells (VSELs) an Update and Future Directions. Circulation Research, 124(2), 208–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bhartiya, D., Anand, S., & Kaushik, A. (2020). Pluripotent very Small Embryonic-like Stem Cells Co-exist along with Spermatogonial Stem Cells in Adult Mammalian Testis. Human Reproduction Update, 26(1), 137–138.

    Article  Google Scholar 

  98. Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K., & Hinduja, I. (2011). Detection, Characterization, and Spontaneous Differentiation in vitro of very Small Embryonic-like Putative Stem Cells in Adult Mammalian Ovary. Stem Cells and Development, 20(8), 1451–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Patel, H., & Bhartiya, D. (2016). Testicular Stem Cells Express Follicle-Stimulating Hormone Receptors and are Directly Modulated by FSH. Reproductive Sciences, 23(11), 1493–1508.

    Article  CAS  PubMed  Google Scholar 

  100. Bhartiya, D. (2013). Are Mesenchymal Cells Indeed Pluripotent Stem Cells or just Stromal Cells? OCT-4 and VSELs Biology has Led to Better Understanding. Stem Cells International, 2013, 1–6.

    Article  Google Scholar 

  101. Feldman, N., Gerson, A., Fang, J., Li, E., Zhang, Y., Shinkai, Y., Cedar, H., & Bergman, Y. (2006). G9a-Mediated Irreversible Epigenetic Inactivation of Oct-3/4 During Early Embryogenesis. Nature Cell Biology, 8(2), 188–194.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M. and E.M.P. designed and wrote the manuscript. F.G. edited the manuscript.

Corresponding author

Correspondence to Ensieh M. Poursani.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehravar, M., Ghaemimanesh, F. & Poursani, E.M. An Overview on the Complexity of OCT4: at the Level of DNA, RNA and Protein. Stem Cell Rev and Rep 17, 1121–1136 (2021). https://doi.org/10.1007/s12015-020-10098-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10098-3

Keywords

Navigation