Skip to main content
Log in

Evaluation of weed impact on wheat biomass by combining visible imagery with a plant growth model: towards new non-destructive indicators for weed competition

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

To evaluate the impact of weeds on crops, precise identification and early prediction are required. This paper presents two new non-destructive indicators deduced from visible images: weed pressure (WP) and wheat growth status (WGS). They are based on the fractional vegetation cover (FVC) obtained from digital vegetation maps (crop vs. weeds) in a wheat field. FVC was determined for both plants with a Matthews Correlation Coefficient of 0.86 using machine learning classification [support vector machine-radial basis function (SVM-RBF)] combined with Bag of Visual Words technique. It was compared to destructive measurements of above-ground biomass (BM) and leaf area index (LAI). Since the coefficient of determination between FVC and BM is very good for wheat crop (r2 = 0.93), FVC is used to feed a growth model based on the Monteith equation. Replacing the standard approach by the image approach in the initialization of the model had no impact on the simulated BM values. WP characterized weed pressure, namely the FVCw/FVCc ratio and it quantified the crop–weed competition. The results show that up to the tillering stage, it could substitute for the BMw/BMc ratio resulting from a destructive approach. The second indicator, WGS assessed crop health through the monitoring of biomass production. It compared the theoretical wheat biomass simulated under non-stressed conditions, BMsimulated, to the actual biomass, BMobserved. The impact of weed on crop was evaluated by combining the results of these two indicators. This simple and fast method based on proximal detection data offers promising results in agroecological cropping systems, where high responsiveness is a major challenge for site-specific weed management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aase, J. K. (1978). Relationship between leaf area and dry matter in winter wheat. Agronomy Journal, 70, 563–565.

    Article  Google Scholar 

  • Akbarzadeh, S., Paap, A., Ahderom, S., Apopei, B., & Alameh, K. (2018). Plant discrimination by support vector machine classifier based on spectral reflectance. Computers and Electronics in Agriculture, 148, 250–258.

    Article  Google Scholar 

  • Bah, M. D., Hafane, A., & Canals, R. (2018). Deep learning with unsupervised data labelling for weeds detection on UAV images. Remote Sensing, 10(11), 1690.

    Article  Google Scholar 

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Berge, T. W., Goldberg, S., Kaspersen, K., & Netland, J. (2012). Towards machine vision based site-specific weed management in cereals. Computers and Electronics in Agriculture, 81, 79–86.

    Article  Google Scholar 

  • Buhler, D. D. (2013). Development of alternative weed management strategies. Journal of Production Agriculture, 9(4), 501–505.

    Article  Google Scholar 

  • Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M., & Pajares, G. (2011). Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75, 337–346.

    Article  Google Scholar 

  • Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252.

    Article  Google Scholar 

  • Casadesús, J., & Villegas, D. (2014). Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. Journal of Integrative Plant Biology, 56(1), 7–14.

    Article  PubMed  Google Scholar 

  • Caussanel, P. J. (1989). Nuisibilité et seuils de nuisibilité des mauvaises herbes dans une culture annuelle: situation de concurrence bispécifique (Injurious effects of weeds and weed thresholds in an annual arable crop: interference between two species). Agronomie, 9, 219–240.

    Article  Google Scholar 

  • Chartier, M., Bonchretien, P., Allirand, J. M., & Gosse, G. (1989). Utilisation des cellules au silicium amorphe pour la mesure du rayonnement photosynthétiquement actif (400–700 nm) (Amorphous silicon cells for the measurement of photosynthetically active radiation). Agronomie, 9, 281–284.

    Article  Google Scholar 

  • Colbach, N., & Cordeau, S. (2018). Reduced herbicide use does not increase crop yield loss if it is compensated by alternative preventive and curative measures. European Journal of Agronomy, 94, 67–78.

    Article  Google Scholar 

  • Cordeau, S., Dessaint, F., Denieul, C., Bonin, L., Vuillemin, F., Delattre, M., et al. (2016). La nuisibilité directe des adventices en grandes cultures: Quelles réponses nous apportent les essais désherbage? (The direct harmful effect of weed in field crops: what do herbicide trials tell us?). In AFPP (Ed.), Proceedings of 23e Conférence du COLUMA, Dijon (pp. 11–22). Tours, France: AFPP Publishers.

  • Gao, J., Liao, W., Nuyttens, D., Lootens, P., Vangeyte, J., Pižurica, A., et al. (2018). Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 67, 43–53.

    Article  Google Scholar 

  • Guijarro, M., Pajares, G., Riomoros, I., Herrera, P. J., Burgos-Artizzu, X. P., & Ribeiro, A. (2011). Automatic segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture, 75, 75–83.

    Article  Google Scholar 

  • Hague, T., Tillett, N. D., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 7, 21–32.

    Article  Google Scholar 

  • Heap, I. (2014). Global perspective of herbicide-resistant weeds. Pest Management Science, 70, 1306–1315.

    Article  CAS  PubMed  Google Scholar 

  • Jeuffroy, M. H., & Recous, S. (1999). Azodyn: A simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization. European Journal of Agronomy, 10, 129–144.

    Article  Google Scholar 

  • Jinlin, M., Ziping, M., Baosheng, K., & Ke, L. (2014). A method of protein model classification and retrieval using Bag-of-Visual-Features. Computational and Mathematical Methods in Medicine, 2014, 269394.

    Google Scholar 

  • Jiang, Y. G., Ngo, C. W., & Hauptmann, A. (2010). Representations of keypoint-based semantic concept detection: A comprehensive study. IEEE Transactions on Multimedia, 12(1), 42–53.

    Article  Google Scholar 

  • Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. In Institute of Electrical and Electronics Engineers, Inc. (Ed.), Proceedings IEEE/ASME (AIM) international conference on advanced intelligent mechatronics (Vol. 2, pp. b1079–b1083). Kobe, Japan: IEEE Publishers.

  • Kazmi, W., Garcia-Ruiz, F. J., Nielsen, J., Rasmussen, J., & Andersen, J. H. (2015). Detecting creeping thistle in sugar beet fields using vegetation indices. Computers and Electronics in Agriculture, 112, 10–19.

    Article  Google Scholar 

  • Lancashire, P. D., Bleiholder, H., van den Boom, T., Langelüddeke, P., Stauss, R., Weber, E., et al. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119, 561–601.

  • López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A. I., Mesas-Carrascosa, F. J., & Peña, J. M. (2016). Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precision Agriculture, 17(2), 183–199.

    Article  Google Scholar 

  • Louargant, M., Villette, S., Jones, G., Vigneau, N., Paoli, J. N., & Gée, C. (2017). Weed detection by UAV: Simulation of the impact of spectral mixing in multispectral images. Precision Agriculture, 18, 932–951.

    Article  Google Scholar 

  • Louargant, M., Jones, G., Faroux, R., Paoli, J. N., Maillot, T., Gée, C., et al. (2018). Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information. Remote Sensing, 10(5), 761–779.

    Article  Google Scholar 

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Marchant, J. A., & Onyango, C. M. (2000). Shadow-invariant classification for scenes illuminated by daylight. Journal of the Optical Society of America, 17(11), 1952–1961.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Guanter, J., Egea, G., Perez-Ruiz, M., & Apolo-Apolo, O. E. (2019). Estimation of the leaf area index in maize based on UAV imagery using deep learning techniques. In J. V. Stafford (Ed.), Proceedings of 12th European conference on precision agriculture (pp. 389–393). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Matthews, B. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et biophysica acta, 405(2), 442–451.

    Article  CAS  PubMed  Google Scholar 

  • Merienne, J., Larmure, A., & Gée, C. (2019). Preliminary study for weed biomass prediction combining visible images with a plant growth model. In J. V. Stafford (Ed.), Proceedings of 12th European conference on precision agriculture (pp. 597–603). Wageningen, The Netherlands: Wageningen Academic Publishers.

  • Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63, 282–293.

    Article  Google Scholar 

  • Mézière, D., Petit, S., Granger, S., Biju-Duval, L., & Colbach, N. (2015). Developing a set of simulation-based indicators to assess harmfulness and contribution to biodiversity of weed communities in cropping systems. Ecological Indicators, 48, 157–170.

    Article  Google Scholar 

  • Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9, 747–766.

    Article  Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 281, 277–294.

    Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 9, 62–66.

    Article  Google Scholar 

  • Paruelo, J. M., Lauenroth, W. K., & Roset, P. A. (2000). Technical note: Estimating aboveground plant biomass using a photographic technique. Journal of Range Management, 53, 190–193.

    Article  Google Scholar 

  • Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, 8, e77151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pflanz, M., Nordmeyer, H., & Schirrmann, M. (2018). Weed mapping with UAS imagery and a Bag of Visual Words based image classifier. Remote Sensing, 10(10), 1530.

    Article  Google Scholar 

  • Protiere, A., & Sapiro, G. (2007). Interactive image segmentation via adaptive weighted distances. IEEE Transactions on Image Processing, 16(4), 1046–1057.

    Article  PubMed  Google Scholar 

  • Sa, I., Popović, M., Khanna, R., Chen, Z., Lottes, P., Liebisch, F., et al. (2018). WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sensing, 10(9), 1423.

    Article  Google Scholar 

  • Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy. F-score and ROC: A family of discriminant measures for performance evaluation. In A. Sattar, B. H. Kang, & B. Ho (Eds.), Proceedings of 9th Australian joint conference on artificial intelligence (pp. 1015–1021). Hobart, Australia: Springer.

  • Street, R. (2000). Technology and Applications of Amorphous Silicon (Vol. 37). Berlin, Germany: Springer-Verlag. /Series.

    Google Scholar 

  • Suh, H. K., Hofstee, J. W., IJsselmuiden, J., & van Henten, E. J. (2018). Sugar beet and volunteer potato classification using Bag-of-Visual-Words model. Scale-invariant feature transform or speeded up robust feature descriptors and crop row information. Biosystems Engineering, 166, 210–226.

    Article  Google Scholar 

  • Torres-Sánchez, J., Peña-Barragán, J. M., De Castro, A. I., & López-Granados, F. (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 103, 104–113.

    Article  Google Scholar 

  • Utstumo, T., Urdal, F., Brevik, A., Dørum, J., Netland, J., Overskeid, Ø, et al. (2018). Robotic in-row weed control in vegetables. Computers and Electronics in Agriculture, 154, 36–45.

    Article  Google Scholar 

  • Vapnik, W. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2), 264–280.

    Article  Google Scholar 

  • Wenzhu, Y., Sile, W., Xiaolan, Z., Jingsi, Z., & Jiaqi, F. (2015). Greenness identification based on HSV decision tree. Information Processing in Agriculture, 2(3–4), 149–160.

    Google Scholar 

  • Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34, 1–20.

    Article  Google Scholar 

  • Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Shape features for identifying young weeds using image analysis. Transactions of the ASAE, 38, 271–281.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Vincent Durey and Annick Matéjicek who were involved in this project, on the PAR sensor control and on plant identification, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Gée.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 3 and 4.

Table 3 Summary of the values of the various parameters obtained by the image approach and the destructive approach for each of the three dates, March 23, April 6 and April 12
Table 4 Summary of the values of the indicators deduced from each of the two parameters (BM and FVC) on March 23, April 6 and April 12 (crop and weeds, BM: above-ground biomass; FVC: fractional vegetation cover). Mean and standard deviation (Std) values are indicated

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gée, C., Denimal, E., Merienne, J. et al. Evaluation of weed impact on wheat biomass by combining visible imagery with a plant growth model: towards new non-destructive indicators for weed competition. Precision Agric 22, 550–568 (2021). https://doi.org/10.1007/s11119-020-09776-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09776-6

Keywords

Navigation