Skip to main content

Advertisement

Log in

The effect of Ag nanoparticles in Ag/polyvinyl alcohol nanofiber composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ag nanoparticles (AgNPs) and Ag/polyvinyl alcohol (PVA) nanofiber composites were synthesized via chemical reduction and electrospinning methods, respectively. The filler mass of AgNPs in the Ag/PVA nanofiber composites was varied from 0.025 to 0.125 g. X-ray diffraction (XRD) analysis was used to determine the structure, crystal size, and lattice parameter of powdered AgNPs. Fourier transform infrared (FTIR) spectroscopy was used to determine the functional groups of the samples. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the fiber diameter, particle size, and nanoparticle size distribution in the Ag/PVA composites. The XRD analysis showed that the AgNPs were ~ 18.9 nm in diameter, consistent with TEM observations. FTIR analysis indicated the presence of Ag–O functional groups in the composites for all mass variations of AgNPs, as indicated by a peak at 490–510 cm−1. The emergence of this functional group confirmed the presence of AgNPs in the composites. SEM and TEM analyses showed that the diameter of the Ag/PVA nanofibers substantially increased from 150.5 (AgNPs mass 0.025 g) to 190.5 nm (AgNPs mass 0.125 g). AgNPs were successfully dispersed in a PVA polymer matrix network appear to have agglomerated at some those network points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xingxing C, Xuebin Z, Hao S, Yi F (2014) Fabrication of magnetic Fe3O4 nanotubes by electrospinning. Rare Met Mater Eng 43:2330–2334

    Google Scholar 

  2. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    CAS  Google Scholar 

  3. Muhaimin M, Astuti WD, Sosiati H, Triyana K (2014) Fabrikasi Nanofiber Komposit Nanoselulosa/PVA dengan Metode Electrospinning. Prosiding Pertemuan Ilmiah XXVIII HFI Jateng & DIY, Yogyakarta

    Google Scholar 

  4. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006

    CAS  PubMed  Google Scholar 

  5. Wahyudi T, Sugiyana D (2011) Pembuatan Serat Nano Menggunakan Metode Electrospinning. Arena Tekst 26:54992

    Google Scholar 

  6. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11:674–681

    CAS  Google Scholar 

  7. Sharma R, Singh N, Gupta A, Tiwari S, Tiwari SK, Dhakate SR (2014) Electrospun chitosan–polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. J Mater Chem A 2:16669–16677

    CAS  Google Scholar 

  8. Yu DG, Wang X, Li XY, Chian W, Li Y, Liao YZ (2013) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9:5665–5672

    CAS  PubMed  Google Scholar 

  9. Saquing CD, Manasco JL, Khan SA (2009) Electrospun nanoparticle–nanofiber composites via a one-step synthesis. Small 5:944–951

    CAS  PubMed  Google Scholar 

  10. Yu D-G, Zhou J, Chatterton NP, Li Y, Huang J, Wang X (2012) Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Int J Nanomed 7:5725

    CAS  Google Scholar 

  11. Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN (2013) Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8:3483–3493

    Google Scholar 

  12. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718

    CAS  Google Scholar 

  13. Korbekandi H, Iravani S (2012) Silver nanoparticles. The delivery of nanoparticles. InTech, New York

    Google Scholar 

  14. Tran QH, Le A-T et al (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives Adv. Nat Sci Nanosci Nanotechnol 4:033001

    CAS  Google Scholar 

  15. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:4019

    CAS  PubMed  Google Scholar 

  16. Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V (2012) Progressive approach for metal nanoparticle synthesis. Mater Lett 89:47–50

    CAS  Google Scholar 

  17. Sato-Berrú R, Redón R, Vázquez-Olmos A, Saniger JM (2009) Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy. J Raman Spectrosc 40:376–380

    Google Scholar 

  18. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    CAS  Google Scholar 

  19. Zhang Z-Q, Higgins J, Kim CL, Chang C (2013) Synthesis and antimicrobial properties of nanosilver. J Mater Environ Sci 4:139–142

    CAS  Google Scholar 

  20. Poyraz S, Cerkez I, Huang TS, Liu Z, Kang L, Luo J, Zhang X (2014) One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents. ACS Appl Mater Interfaces 6:20025–20034

    CAS  PubMed  Google Scholar 

  21. Zhang Z, Wu Y, Wang Z, Zou X, Zhao Y, Sun L (2016) Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Mater Sci Eng, C 69:462–469

    CAS  Google Scholar 

  22. Tan G, Sağlam S, Emül E, Erdönmez D, Sağlam N (2016) Synthesis and characterization of silver nanoparticles integrated in polyvinyl alcohol nanofibers for bionanotechnological applications. Turk J Biol 40:643–651

    CAS  Google Scholar 

  23. Rosic R, Pelipenko J, Kristl J, Kocbeck P, Baumgartner S (2012) Properties, engineering and applications of polymericnanofibers: current research and future advances. Chem Biochem Eng Q 26:417–425

    CAS  Google Scholar 

  24. Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, Sefat F (2016) Potential of electrospun nanofibers for biomedical and dental applications. Materials 9:73

    PubMed Central  Google Scholar 

  25. Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5:244–249

    CAS  PubMed  Google Scholar 

  26. Guzmán MG, Dille J, Godet S (2008) Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. World Acad Sci Eng Technol 43:357–364

    Google Scholar 

  27. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79:594–598

    CAS  PubMed  Google Scholar 

  28. Debye P, Bueche AM (1949) Scattering by an inhomogeneous solid. J Appl Phys 20:518–525

    CAS  Google Scholar 

  29. Jayaramudu T, Raghavendra GM, Varaprasad K, Reddy GVS, Reddy AB, Sudhakar K, Sadiku ER (2016) Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J Appl Polym Sci. https://doi.org/10.1002/app.43027

    Article  Google Scholar 

  30. Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13:6639–6650

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9:217–227

    CAS  Google Scholar 

  32. Mansur HS, Sadahira CM, Souza AN, Mansur AA (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng, C 28:539–548

    CAS  Google Scholar 

  33. Khanna PK, Singh N, Charan S, Subbarao V, Gokhale R, Mulik UP (2005) Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys 93:117–121

    CAS  Google Scholar 

  34. Mbhele ZH, Salemane MG, Van Sittert C, Nedeljković JM, Djoković V, Luyt AS (2003) Fabrication and characterization of silver- polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    CAS  Google Scholar 

  35. Nguyen T-H, Kim Y-H, Song H-Y, Lee B-T (2011) Nano Ag loaded PVA nano-fibrous mats for skin applications. J Biomed Mater Res B Appl Biomater 96:225–233

    PubMed  Google Scholar 

  36. Meng Y (2015) A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials 5:1124–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chellamani KP, Sundaramoorthy P, Sureshram T (2012) Characterisation of Poly vinyl alcohol (PVA)/Silver nitrate nanomembranes for their suitability in wound dressing applications Int. J Emerg Technol Adv, Eng, p 2

    Google Scholar 

  38. Ilčin M, Holá O’ga O, Bakajová B, Kučerík J (2010) FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends. J Radioanal Nucl Chem 283:9–13

    Google Scholar 

  39. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2008) Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull 43:90–96

    CAS  Google Scholar 

  40. Li X-G, Kresse I, Springer J, Nissen J, Yang Y-L (2001) Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer 42:6859–6869

    CAS  Google Scholar 

  41. Abdelrazek EM, Elashmawi IS, El-khodary A, Yassin A (2010) Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr Appl Phys 10:607–613

    Google Scholar 

  42. Paipitak K, Pornpra T, Mongkontalang P, Techitdheer W, Pecharapa W (2011) Characterization of PVA-chitosan nanofibers prepared by electrospinning. Procedia Eng 8:101–105

    CAS  Google Scholar 

  43. Loría-Bastarrachea MI, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Vázquez-Torres H, Ávila-Ortega A (2011) A TG/FTIR study on the thermal degradation of poly (vinyl pyrrolidone). J Therm Anal Calorim 104:737–742

    Google Scholar 

  44. Anjaneyulu U, Priyadarshini B, Grace AN, Vijayalakshmi U (2017) Fabrication and characterization of Ag doped hydroxyapatite-polyvinyl alcohol composite nanofibers and its in vitro biological evaluations for bone tissue engineering applications. J Sol-Gel Sci Technol 81:750–761

    CAS  Google Scholar 

  45. El Fawal GF, Hassan HS, El-Aassar MR, Elkady MF (2019) Electrospun polyvinyl alcohol nanofibers containing titanium dioxide for gas sensor applications. Arab J Sci Eng 44:251–257

    Google Scholar 

  46. Khan MQ, Kharaghani D, Ullah S, Waqas M, Abbasi AMR, Saito Y, Zhu C, Kim IS (2018) Self-cleaning properties of electrospun PVA/TiO2 and PVA/ZnO nanofibers composites. Nanomaterials 8:644

    PubMed Central  Google Scholar 

  47. Duan Y, Jia J, Wang S, Yan W, Jin L, Wang Z (2007) Preparation of antimicrobial poly (ϵ-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106:1208–1214

    CAS  Google Scholar 

  48. Zhang Z, Wu Y, Wang Z, Zhang X, Zhao Y, Sun L (2017) Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties. Mater Sci Eng, C 78:706–714

    CAS  Google Scholar 

  49. Cao F, Tian W, Gu B, Ma Y, Lu H, Li L (2017) High-performance UV–Vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res 10:2244–2256

    CAS  Google Scholar 

  50. Van Hoang N, Hung CM, Hoa ND, Van Duy N, Van Hieu N (2018) Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level. J Hazard Mater 360:6–16

    PubMed  Google Scholar 

  51. Bian J, Olesik SV (2017) Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers. Analyst 142:1125–1132

    CAS  PubMed  Google Scholar 

  52. Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C (2018) A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv Mater 30:1706738

    Google Scholar 

  53. Tamilarasi P, Meena P (2020) Green synthesis of silver nanoparticles (Ag NPs) using Gomphrena globosa (Globe amaranth) leaf extract and their characterization. Mater Today Proc

  54. Bogdanova L, Lesnichaya V, Spirin M, Shershnev V, Irzhak V, Kydralieva K, Zarrelli M, Dzhardimalieva G (2020) Mechanical properties of polycondensate epoxy nanocomposites filled with Ag nanoparticles synthesized in situ. Mater Today Proc

  55. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    CAS  PubMed  Google Scholar 

  56. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles Mater. Chem Phys 94:449–453

    CAS  Google Scholar 

  57. Jin W-J, Lee HK, Jeong EH, Park WH, Youk JH (2005) Preparation of polymer nanofibers containing silver nanoparticles by using poly (N-vinylpyrrolidone). Macromol Rapid Commun 26:1903–1907

    CAS  Google Scholar 

  58. Shin HS, Yang HJ, Kim SB, Lee MS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J Colloid Interface Sci 274:89–94

    CAS  PubMed  Google Scholar 

  59. Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566

    Google Scholar 

  60. He D, Hu B, Yao Q-F, Wang K, Yu S-H (2009) Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3:3993–4002

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the KBK Topic Research Non-Tax State Revenue (PNBP) UM 2020.

Author information

Authors and Affiliations

Authors

Contributions

SS: conceptualization, methodology. AR: software, data curation, writing- original draft preparation. CIY: visualization. HS: formal analysis, investigation. AT: software, data curation, validation. NM: validation, writing- reviewing and editing.

Corresponding author

Correspondence to Sunaryono Sunaryono.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunaryono, S., Rachmawati, A., Yogihati, C.I. et al. The effect of Ag nanoparticles in Ag/polyvinyl alcohol nanofiber composites. Polym. Bull. 79, 555–568 (2022). https://doi.org/10.1007/s00289-020-03528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03528-2

Keywords

Navigation