Skip to main content
Log in

Late Mesozoic Eastern Mongolia Volcanic Area: Structure, Magmatic Associations, and Sources of Melts

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Eastern Mongolia Volcanic Area (EMVA) is the largest Late Mesozoic intracontinental volcanic area of East Asia. Its magmatic activity lasted from ~ 170 Ma to the beginning of Cenozoic, but the peak of activity occurred between 135 and 105 Ma. It was accompanied by rifting and formation of NE-trending grabens and troughs filled with thick volcanic sequence. The largest volcanic eruptions occurred in the first half of the Early Cretaceous. They were mainly represented by mafic lavas and were terminated by acid volcanism. The second half of the Early Cretaceous was marked by exclusively mafic volcanism, which was replaced by alkaline basaltic rocks since the end of the Early Cretaceous and in the Late Cretaceous. The mafic rocks of the EMVA are trachybasalt and basaltic trachyandesite, with subordinate alkaline basaltic rocks. The geochemical characteristics of these rocks indicate that they were derived from two magma types related to different mantle sources: (1) suprasubduction basalts (IAB) and (2) within-plate ocean-island basalts (OIB). The predominance of rocks with transitional characteristics testifies the interaction of magmas or their sources during their formation. The widest spread OIB-type rocks have (Th/Nb)PM ≤ 1. The IAB-type mafic rocks are of limited distribution and were formed mainly at the early stages of the EMVA evolution. The felsic igneous rocks of the EMVA were mainly derived by crustal anatexis, as well as by the interaction of anatectic melts with basaltic derivatives. A model is proposed, in which the EMVA was formed in a composite geodynamic setting, which was determined by the mantle plume impact on the active continental margin. The magmatic evolution is thought to be related to the interaction of plume-derived magmas with a subduction-modified mantle wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. The chemical composition of the Late Mesozoic rocks of the Eastern Mongolian volcanic province is represented in table ESM_1.xls (Supplementary) to the Russian and English on-line versions on sites https://elibrary.ru/ and http://link.springer.com/, respectively.

REFERENCES

  1. Badarch, G., Cunningham, D.W., and Windley, B.F., A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia, J. Asian Earth Sci., 2002, vol. 21, pp. 87–110.

    Article  Google Scholar 

  2. Bars, A., Miao, L., Fochin, Z., et al., Petrogenesis and tectonic implication of the Late Mesozoic volcanic rocks in east mongolia, Geol. J., 2018, vol. 53, pp. 2449–2470.

    Article  Google Scholar 

  3. Bazhenov, M.L., Kozlovsky, A.M., Yarmolyuk, V.V., et al., Late Paleozoic paleomagnetism of South Mongolia: exploring relationships between Siberia, Mongolia and North China, Gondwana Res., 2016, vol. 40, pp. 124–141.

    Article  Google Scholar 

  4. Berzina, A.P., Berzina, A.N., Gimon, V.O., et al., The Shakhtama porphyry Mo ore-magmatic system (Eastern Transbaikalia): age, sources, and genetic features, Russ. Geol. Geophys., 2013, vol. 54, pp. 587–605.

    Article  Google Scholar 

  5. Chernyshev, I.V., Lebedev, V.A., Arakelyants, M.M., K-Ar dating of Quaternary volcanics: methodology and interpretation of results, Petrology, 2006, vol. 14, no. 1, pp. 62–80.

    Article  Google Scholar 

  6. Cogné, J.-P., Kravchinsky, V.A., Halim, N., and Hankard, F., Late Jurassic–Early Cretaceous closure of the Mongol–Okhotsk ocean demonstrated by new Mesozoic palaeomagnetic results from the trans-Baikal area (SE Siberia), Geophys. J. Int., 2005, vol. 163, pp. 813–832.

    Article  Google Scholar 

  7. Daoudene, Y., Gapais, D., and Ledru, P., The Ereendavaa Range (north-eastern Mongolia): an additional argument for Mesozoic extension throughout Eastern Asia, Int. J. Earth Sci., 2009, vol. 98, pp. 1381–1393.

    Article  Google Scholar 

  8. Daoudene, Y., Ruffet, G., Cocherie, A., et al., Timing of exhumation of the Ereendavaa metamorphic core complex (north-eastern Mongolia) - U-Pb and 40Ar/39Ar constraints, J. Asian Earth Sci., 2013, vol. 62, pp. 98–116.

    Article  Google Scholar 

  9. Dash, B., Ying, A., Jiang, N., et al., Petrology, structural setting, timing, and geochemistry of cretaceous volcanic rocks in eastern mongolia: constraints on their tectonic origin, Gondwana Res, 2015, vol. 27, pp. 281–299.

    Article  Google Scholar 

  10. Davis, G.A., Yadong, Z., Cong, W., et al., Mesozoic tectonic evolution of the Yanshan fold and thrust belt, northern China, Paleozoic and Mesozoic Tectonic Evolution of Central Asia: from Continental Assembly to Intracontinental Deformation, M. Hendrix and G. Davis, Eds., Geol. Soc. Amer. Mem., 2001, vol. 194, pp. 171–197.

  11. Dobrolubov, B.A. and Filippova, I.B., The geology, rock chemistry, and fluorine mineralizations of north west part, Eastern Mongolian rift belt, Geology and Mineral Resources of Mongolia, Ed. Marinov, N.A., Eds., Moscow: Nedra, 1990, vol. 3, pp. 108–123.

    Google Scholar 

  12. Emelyanova, T.A., Petrishchevsky, A.M., Izosov, L.A., Lee, N.S., and Pugachev A.A. Late Mesozoic—Cenozoic stages of volcanism and geodynamics of the Sea of Japan and Sea of Okhotsk, Petrology, 2020, vol. 28, no. 5, pp. 418–430.

    Article  Google Scholar 

  13. Frikh-Khar, D.I. and Luchitskaya, A.I., Pozdnemezozoiskie vulkanity i svyazannye s nimi gipabissal’nye intruzivy Mongolii (Late Mesozoic Volcanic Rocks and Related Hypabyssal Intrusions of Mongolia), Moscow: Nauka, 1978.

  14. Geologicheskie formatsii Mongolii (Geological Formations of Mongolia), Moscow: Izd-vo “Shag”, 1995.

  15. Gordienko I.V., Medvedev A.Ya, Gornova M.A. et al., The Haraa Gol terrane in the western Hentiyn mountains (northern Mongolia): geochemistry, geochronology, and geodynamics, Russ. Geol. Geophys., 2012, vol. 53, pp. 281-292.

    Article  Google Scholar 

  16. Gordienko, I.V., Minina, O.R., Vetluzhskikh, L.I., et al., Hentei-Dauria fold system of the Mongolia–Okhotsk belt: magmatism, sedimentogenesis, andgeodynamics, Geodynam. Tectonophys., 2018, vol. 9, pp. 1063–1097.

    Article  Google Scholar 

  17. Graham, S.A., Hendrix, M.S., Johnson, C.L., et al., Sedimentary record and tectonic implications of Mesozoic rifting in Southeast Mongolia, Geol. Soc. Am. Bull., 2001, vol. 113, pp. 1560–1579.

    Article  Google Scholar 

  18. Hasegawa, H., Ando, H., Hasebe, N., et al., Depositional ages and characteristics of Middle–Upper Jurassic and Lower Cretaceous lacustrine deposits in Southeastern Mongolia, Island Arc, 2018, vol. 27, pp. 1–17.

    Article  Google Scholar 

  19. Jerzykiewicz, T. and Russell, D.A., Late Mesozoic stratigraphy and vertebrates of the Gobi Basin, Cretaceous Res., 1991, vol. 12, pp. 345–377.

    Article  Google Scholar 

  20. Johnson, C.L. and Graham, S.A., Sedimentology and reservoir architecture of a synrift lacustrine delta, southeastern Mongolia, J. Sediment. Res, 2004, vol. 74, pp. 786–804.

    Article  Google Scholar 

  21. Karta geologicheskikh formatsii Mongol’skoi Narodnoi Respubliki. Masshtab 1 : 1500000 (Map of the Geological Formations of the Mongolian People’s Republic. Scale 1 : 1500000), Yanshin, A.L, Eds., Moscow: GUGK USSR, 1989.

  22. Kelemen, P.B., Hanghoj, K., and Greene, A.R., One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, Treatise on Geochemistry, Amsterdam: Elsevier, 2003, Vol. 3, pp. 593–659.

    Google Scholar 

  23. Khanchuk, A.I., Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of East Russia), Vladivostok: Dal’nauka, 2006.

  24. Komaritsyna, T.Yu., Yarmolyuk, V.V., and Vorontsov, A.A., Crustal contamination of Early Cretaceous magmatic rocks of the Western Transbaikal rifting zone, Dokl. Earth Sci., 2018, vol. 481, pp. 948–952.

    Article  Google Scholar 

  25. Kozakov, I.K., Kozlovsky, A.M., Yarmolyuk, V.V., Kirnozova, T.I., and Fugzan, M.M., Oyunchimeg, Ts. and Erdenezhargal, Ch., Geodynamic environments of the origin of poly- and monometamorphic complexes in the Southern Altai Metamorphic Belt, Central Asian Orogenic Belt, Petrology, 2019, vol. 27, no. 3, pp. 223–242.

    Article  Google Scholar 

  26. Kravchinsky, V.A., Cogne, J.-P., Harbert, W., and Kuzmin, M.I., Evolution of the Mongol–Okhotsk ocean with paleomagnetic data from the suture zone, Geophys. J. Int., 2002, vol. 148, pp. 34–57.

    Article  Google Scholar 

  27. Larson, R.L. and Olson, P., Mantle plumes control magnetic reversal frequency, Earth Planet. Sci. Lett., 1991, vol. 107, pp. 437–447.

    Article  Google Scholar 

  28. Lebedev V.A., Vashakidze G.T., Parfenov A.V., Yakushev A.I. The Origin of adakite-like magmas in the modern continental collision zone: evidence from Pliocene Dacitic Volcanism Of the Akhalkalaki lava plateau (Javakheti Highland, Lesser Caucasus), Petrology, 2019, vol. 28, no. 3, pp. 307–328.

    Article  Google Scholar 

  29. Litvinovsky, B.A., Yarmolyuk, V.V., and Zanvilevich A.N., et al., Sources of material and genesis of granitic pegmatites of the Oshurkovskii alkaline monzonite massif, Transbaikalia, Geochem. Int., 2005, vol. 43, no. 12, pp. 1149–1167.

    Google Scholar 

  30. Martinson, G.G. and Shuvalov, V.F., Stratigraphic subdivision of the Jurassic and Cretaceous of the Southeastern Mongolia, Izv. Akad. Nauk SSSR, Ser. Geol., 1973, pp. 139–143

  31. Mezozoiskaya i kainozoiskaya tektonika i magmatizm Mongolii (Mesozoic and Cenozoic Tectonics and Magmatism of Mongolia), Moscow: Nauka, 1975.

  32. Nikiforov, A.V. and Yarmolyuk, V.V., Late Mesozoic carbonatite provinces in Central Asia: their compositions, sources and genetic settings, Gondwana Res., 2019, vol. 69, pp. 56–72.

    Article  Google Scholar 

  33. Parfenov, A.V., Lebedev, V.A., Chernyshev, I.V., Vashakidze, G.T., Yakushev, A.I., Gol’tsman, Yu.V., Chugaev, A.V., Oleinikova, T.I., Kanunnikova, E.M., and Gabarashvili, K.A., Petrological-geochemical characteristics of lavas, sources and evolution of magmatic melts of the Kazbek Neovolcanic Center (Greater Caucasus), Petrology, 2019, vol. 27, no. 6, pp. 606–632.

    Article  Google Scholar 

  34. Parfenov, L.M., Popeko, L.I., Tomurtogoo, O., Tectonic problems of the Mongol–Okhotsk Orogenic Belt, Tikhookean. Geol., 1999, vol. 18, pp. 24–43.

    Google Scholar 

  35. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  36. Pearce, J.A., Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, 2008, vol. 100, pp. 14–48.

    Article  Google Scholar 

  37. Peretyazhko, I.S., Savina, E.A., and Dril’, S.I., Early Cretaceous trachybasalt–trachyte–trachyrhyolitic volcanism of the Nyalga Basin (Central Mongolia): sources and evolution of continental rift magmas, Russ. Geol. Geophys., 2018, vol. 59, pp. 1679-1701.

    Article  Google Scholar 

  38. Peretyazhko, I.S., Savina, E.A., Suk, N.I., Kotel’nikov, A.R., Sapozhnikov, A.N., and Shendrik, R.Yu., Evolution of the fluoride–calcium melt composition according to experimental data and fluorite formation in rhyolites, Petrology, 2020, vol. 28, no. 3, pp. 221–245.

    Article  Google Scholar 

  39. Ruzhentsev S.V. and Nekrasov, G.E., Tectonics of the Aga Zone, Mongolia–Okhotsk Belt, Geotectonics. 2009, vol. 43, no. 1, pp. 34–50.

    Article  Google Scholar 

  40. Sasim, S.A. and Dril’, S.I., Geochemistry and Sr-Nd isotope systematics of the shoshonite and trachybasaltic series by the example of the Mesozoic volcanic rocks of the Ingoda, Usugli, and Aleksandrovo-Zavodskaya rift basins of East Transbaikalian area, Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). Materialy soveshchaniya (Geodynamic Evolution of Lithosphere of the Central Asian mobile belt (from ocean to continent). Proc. Conference), Irkutsk: IZK SO RAN, 2013, vol. 11, pp. 202–204.

  41. Savatenkov, V.M., Kozlovsky, A. M., Yarmolyuk, V. V., Rudnev, S. N., and Oyunchimeg, Ts., Pb and Nd isotopic data on granitoids from the Lake Zone, Mongolian, and Gobi Altai with implications for the crustal growth of the Central Asian Orogenic Belt, Petrology, 2020, vol. 28, no. 5, pp. 403–417.

    Article  Google Scholar 

  42. Sheldrick, T.C., Barry, T.L., Millar, I.L., et al., Evidence for southward subduction of the Mongol-Okhotsk oceanic plate: implications from Mesozoic adakitic lavas from Mongolia, Gondwana Res, 2000, vol. 79, pp. 140–156.

    Article  Google Scholar 

  43. Shuvalov, V.F., Paleogeography and history of evolution of lacustrine systems of Mongolia in the Jurassic and Cretaceous time, Mezozoiskie ozernye basseiny Mongolii (Mesozoic lacustrine basins of Mongolia), Leningrad: Nauka, 1982, pp. 18–80.

    Google Scholar 

  44. Shuvalov, V.F., The Cretaceous stratigraphy and palaeobiogeography of Mongolia, Benton, M.J. Shishkin, M.A., Unwin, D.M., Kurochkin, E.N., The Age of Dinosaurs in Russia and Mongolia, Cambridge: Cambridge University Press, 2000, pp. 256–278

    Google Scholar 

  45. Sklyarov E.V., Mazukabzov A.M., Mel’nikov A.I. Kompleksy metamorficheskikh yader kordil’erskogo tipa (Cordilleran-Type Metamorphic Core Complexes) Novosibirsk: Izd-vo SO RAN, NITs OIGGM, 1997.

  46. Sorokin, A.A., Ponomarchuk, V.A., Sorokin, A.P., and Kozyrev, S.K., Geochronology and correlation of Mesozoic magmatic complexes in the northern margin of the Amurian Superterrane, Stratigraphy. Geol. Correlation, 2004, vol. 12, no. 6, pp. 572–587.

    Google Scholar 

  47. Stupak, F.M., Kudryashova, E.A., Lebedev, V.A., and Gol’tsman, Yu.V., The structure, composition, and conditions of generation for the Early Cretaceous Mongolia–East-Transbaikalia Volcanic Belt: the Durulgui–Torei area (Southern Transbaikalia, Russia), J. Volcanol. Seismol., 2018, vol. 12, no. 1, pp. 34–46.

    Article  Google Scholar 

  48. Stupak, F.M., Yarmolyuk, V.V., and Kudryashova, E.A., Late Mesozoic volcanism in the Ust’-Kara Basin (Eastern Transbaikalia) and its relationship with magmatism of the Great Xing’an and East Mongolian volcanic belts, Russ. Geol. Geophys., 2020, vol. 61, pp. 19-33.

    Google Scholar 

  49. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts; implications for mantle composition and processes, Geol. Soc. London: Spec. Publ., 1989, vol. 42, pp. 313–345

    Article  Google Scholar 

  50. Sun, M.D., Chen, H.L., Zhang, F.Q., et al., A 100 Ma bimodal composite dyke complex in the Jiamusi Block, NE China: an indication for lithospheric extension driven by Paleo-Pacific roll-back, Lithos, 2013, vol. 162 P, pp. 317–330.

  51. Tanaka, T., Kamioka, H., Togashi, S., and Dragusanu, C., JNdi-1: a neodymium isotopic reference in consistency with lajolla neodymium, Chem. Geol., 2000, vol. 168, pp. 279–281.

    Article  Google Scholar 

  52. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, London: Blackwell, 1985.

    Google Scholar 

  53. Tectonic Map of Northern, Central, and Eastern Asia. St. Petersburg: VSEGEI Printing House, 2014.

  54. Utsunomiya, A., Ota, T., Windley, B.F., et al., History of the Pacific superplume: implications for Pacific paleogeography since the Late Proterozoic, Superplumes: beyond Plate Tectonics, Yuen, D.A., Maruyama, S., Karato, S., Windley, B.F., New York: Springer, 2007.

    Google Scholar 

  55. Wang, F., Zhou, X.H., Zhang, L.X., et al., Late Mesozoic volcanism in the Greater Xing’an Range (NW China): timing and implications for the dynamics setting of NE Asia, Earth Planet. Sci. Lett., 2006, vol. 251, pp. 179–198.

    Article  Google Scholar 

  56. Wu, F.Y., Sun, D.Y., Li, H.M., et al., A-type granites in northeastern china: age and geochemical constraints on their petrogenesis, Chem. Geol., 2002, vol. 187, pp. 143–173.

    Article  Google Scholar 

  57. Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., Nature and significance of the Early Cretaceous giant igneous event in Eastern China, Earth Planet. Sci. Lett., 2005, vol. 233, pp. 103–119.

    Article  Google Scholar 

  58. Xu, M.J., Xu, W.L., Meng, E., and Wang, F., Zircon U-Pb chronology and geochemistry of Mesozoic volcanic rocks from the Shanghulin–Xiangyang basins in Erguna area, and its tectonic implications, Geol. Bull. China, 2011, vol. 30, pp. 1321–1338.

    Google Scholar 

  59. Xu, W.L., Pei, F.P., Wang, F., et al., Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes, J. Asian Earth Sci., 2013, vol. 74, pp. 167–193.

    Article  Google Scholar 

  60. Yang, Y.T., Guo, Zh.X., Song, Ch.Ch., et al., A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous, Gondwana Res., 2015, vol. 28, pp. 1096–1116.

    Article  Google Scholar 

  61. Yarmolyuk, V.V., Ivanov, V.G., and Kovalenko, V.I., Sources of intraplate magmatism of Western Transbaikalia in the Late Mesozoic–Cenozoic: trace-element and isotope data, Petrology, 1998, vol. 6, no. 2, pp. 101–123.

    Google Scholar 

  62. armolyuk, V.V., Kovalenko, V.I., Ivanov, V.G., Within-plate Late Mesozoic–Cenozoic volcanic province of Central–Eastern Asia: projection of hot mantle field, Geotektonika, 1995, no. 5, pp. 41–67

  63. Yarmolyuk, V.V., Kovalenko, V.I., Sal’nikova, E.B., et al., Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolia–Transbaikal Province, Geotectonics, 2002, vol. 36, no. 4, pp. 293–311.

    Google Scholar 

  64. Yarmolyuk, V.V., Kudryashova, E.A., and Kozlovsky, A.M., Late stages in the evolution of the Late Mesozoic East Mongolian Volcanic areal: rock age and composition, Dokl. Earth Sci., 2019a, vol. 487, no.1, pp. 773–777.

    Article  Google Scholar 

  65. Yarmolyuk, V.V., Nikiforov, A.V., Kozlovsky, A.M., and Kudryashova, E.A., Late Mesozoic East Asian magmatic province: structure, magmatic signature, formation conditions, Geotectonics, 2019b, vol. 53, no. 4, pp. 500–516.

    Article  Google Scholar 

  66. Yarmolyuk, V.V., Kudryashova, E.A., Kozlovsky, A.M., et al., Late Mesozoic–Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: evidence from the South Khangai volcanic region, Mongolia, J. Asian Earth Sci., 2015, vol. 111, pp. 604–623.

    Article  Google Scholar 

  67. Ying, J.F., Zhou, X.H., Zhang, L.Ch., et al., Geochronological and geochemical investigation of the Late Mesozoic volcanic rocks from the northern great Xing’an Range and their tectonic implications, Int. J. Earth Sci., 2010, vol. 99, pp. 357–378.

    Article  Google Scholar 

  68. Zhang, J.H., Ge, W.C., Wu, F.Y., et al., Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, northeastern China, Lithos, 2008a, vol. 102, pp. 138–157.

    Article  Google Scholar 

  69. Zhang, L.Ch., Zhou, X.H., Ying, J.F., et al., Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: implications for their origin and mantle source characteristics, Chem. Geol., 2008b, vol. 256, pp. 12–23.

    Article  Google Scholar 

  70. Zhang, J.H., Gao, S., Ge, W.C., et al., Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, NE China: implications for subduction-induced delamination, Chem. Geol., 2010, vol. 276, pp. 144–165.

    Article  Google Scholar 

  71. Zhang, F.Q., Chen, H.L., Yu, X., et al., Early Cretaceous volcanism in northern Songliao Basin, NE China, and its geodynamic implication, Gondwana Res., 2011, vol. 19, pp. 163–176.

    Article  Google Scholar 

  72. Zhang, K.J., Genesis of the Late Mesozoic Great Xing’an range large igneous province in eastern Central Asia: a Mongol–Okhotsk slab window model, Int. Geol. Rev., 2014, vol. 56, pp. 1557–1583.

    Article  Google Scholar 

  73. Zonenshain, L.P., Kuz’min, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of the Lithospheric Plates of the USSR Territory), Moscow: Nedra, 1990, vol. 1.

  74. Zorin, Yu.A., Sklyarov, E.V., Mazukabzov, A.M., and Belichenko, V.G., Metamorphic core complexes and Early Cretaceous rifting in the Baikal region, Russ. Geol. Geophys., 1997, vol. 38, pp. 1574–1584.

    Google Scholar 

  75. Zorin, Yu.A., Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia, Tectonophysics, 1999, vol. 306, pp. 33–56.

    Article  Google Scholar 

Download references

Funding

This work was made in the framework of the government-financed research programs (nos. 0136-2019-0012 and 0153-2019-0002) of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry and Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences, and was supported by the Russian Foundation for Basic Research and MECSS (project nos. 18-55-91004 and 20-05-00401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Yarmolyuk or A. M. Kozlovsky.

Additional information

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M. et al. Late Mesozoic Eastern Mongolia Volcanic Area: Structure, Magmatic Associations, and Sources of Melts. Petrology 28, 491–514 (2020). https://doi.org/10.1134/S0869591120060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120060053

Keywords:

Navigation