Skip to main content

Advertisement

Log in

Biomarkers in pediatric glomerulonephritis and nephrotic syndrome

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Glomerular diseases are often chronic or recurring and thus associated with a tremendous physical, psychological, and economic burden. Their etiologies are often unknown, and their pathogeneses are frequently poorly understood. The diagnoses and management of these diseases are therefore based on clinical features, traditional laboratory markers, and, often, kidney pathology. However, the clinical presentation can be highly variable, the kidney pathology may not establish a definitive diagnosis, and the therapeutic responses and resulting clinical outcomes are often unpredictable. To try to address these challenges, significant research efforts have been made over the last decade to identify potential biomarkers that can help clinicians optimize the diagnosis and prognosis at clinical presentation, as well as help predict long-term outcomes. Unfortunately, these efforts have to date only identified a single biomarker for glomerular disease that has been fully validated and developed for widespread clinical use (anti-PLA2R antibodies to diagnose membranous nephropathy). In this manuscript, we review the definitions and development of biomarkers, as well as the current knowledge on both historical and novel candidate biomarkers of glomerular disease, with an emphasis on those associated with idiopathic nephrotic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ingelfinger JR, Kalantar-Zadeh K, Schaefer F (2016) World kidney day 2016: averting the legacy of kidney disease--focus on childhood. Am J Kidney Dis 67:349–354

    Article  Google Scholar 

  2. Rheault MN, Zhang L, Selewski DT, Kallash M, Tran CL, Seamon M, Katsoufis C, Ashoor I, Hernandez J, Supe-Markovina K, D'Alessandri-Silva C, DeJesus-Gonzalez N, Vasylyeva TL, Formeck C, Woll C, Gbadegesin R, Geier P, Devarajan P, Carpenter SL, Kerlin BA, Smoyer WE, Midwest Pediatric Nephrology Consortium (2015) AKI in children hospitalized with nephrotic syndrome. Clin J Am Soc Nephrol 10:2110–2118. https://doi.org/10.2215/CJN.06620615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashoor IF, Mansfield SA, O'Shaughnessy MM, Parekh RS, Zee J, Vasylyeva TL, Kogon AJ, Sethna CB, Glenn DA, Chishti AS, Weaver DJ, Helmuth ME, Fernandez HE, Rheault MN, CureGN Consortium (2019) Prevalence of cardiovascular disease risk factors in childhood glomerular diseases. J Am Heart Assoc 8:e012143. https://doi.org/10.1161/JAHA.119.012143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vivarelli M, Massella L, Ruggiero B, Emma F (2017) Minimal change disease. Clin J Am Soc Nephrol 12:332–345. https://doi.org/10.2215/CJN.05000516

    Article  CAS  PubMed  Google Scholar 

  5. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361:11–21. https://doi.org/10.1056/NEJMoa0810457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hofstra JM, Beck LH Jr, Beck DM, Wetzels JF, Salant DJ (2011) Anti-phospholipase A2 receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin J Am Soc Nephrol 6:1286–1291. https://doi.org/10.2215/CJN.07210810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blosser CD, Ayalon R, Nair R, Thomas C, Beck LH Jr (2012) Very early recurrence of anti-phospholipase A2 receptor-positive membranous nephropathy after transplantation. Am J Transplant 12:1637–1642. https://doi.org/10.1111/j.1600-6143.2011.03957.x

    Article  CAS  PubMed  Google Scholar 

  8. Beck LH Jr, Fervenza FC, Beck DM, Bonegio RGB, Malik FA, Erickson SB, Cosio FG, Cattran DC, Salant DJ (2011) Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol 22:1543–1550. https://doi.org/10.1681/ASN.2010111125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95. https://doi.org/10.1067/mcp.2001.113989

    Article  Google Scholar 

  10. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1:182–188. https://doi.org/10.1602/neurorx.1.2.182

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hwang VJ, Ulu A, van Hoorebeke J, Weiss RH (2014) Biomarkers in IgA nephropathy. Biomark Med 8:1263–1277. https://doi.org/10.2217/bmm.14.92

    Article  CAS  PubMed  Google Scholar 

  12. Olson JL, Rennke HG, Venkatachalam MA (1981) Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats. Lab Investig 44:271–279

    CAS  PubMed  Google Scholar 

  13. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397. https://doi.org/10.1172/JCI20402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim YH, Goyal M, Kurnit D, Wharram B, Wiggins J, Holzman L, Kershaw D, Wiggins R (2001) Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int 60:957–968. https://doi.org/10.1046/j.1523-1755.2001.060003957.x

    Article  CAS  PubMed  Google Scholar 

  15. Kerjaschki D, Miettinen A, Farquhar MG (1987) Initial events in the formation of immune deposits in passive Heymann nephritis. gp330-anti-gp330 immune complexes form in epithelial coated pits and rapidly become attached to the glomerular basement membrane. J Exp Med 166:109–128. https://doi.org/10.1084/jem.166.1.109

    Article  CAS  PubMed  Google Scholar 

  16. Rodrigues JC, Haas M, Reich HN (2017) IgA nephropathy. Clin J Am Soc Nephrol 12:677–686. https://doi.org/10.2215/CJN.07420716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119:1668–1677. https://doi.org/10.1172/JCI38468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D'Amico G (2004) Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 24:179–196. https://doi.org/10.1016/j.semnephrol.2004.01.001

    Article  PubMed  Google Scholar 

  19. Fabiano RCG, de Almeida Araújo S, Bambirra EA, Oliveira EA, Simões E, Silva AC, Pinheiro SVB (2017) Mesangial C4d deposition may predict progression of kidney disease in pediatric patients with IgA nephropathy. Pediatr Nephrol 32:1211–1220. https://doi.org/10.1007/s00467-017-3610-y

    Article  PubMed  Google Scholar 

  20. Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154. https://doi.org/10.1038/sj.ki.5002185

    Article  CAS  PubMed  Google Scholar 

  21. Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, Tomino Y, Julian BA, Novak J (2012) Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:1579–1587. https://doi.org/10.1681/ASN.2012010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Briganti EM, Dowling J, Finlay M, Hill PA, Jones CL, Kincaid-Smith PS, Sinclair R, McNeil JJ, Atkins RC (2001) The incidence of biopsy-proven glomerulonephritis in Australia. Nephrol Dial Transplant 16:1364–1367. https://doi.org/10.1093/ndt/16.7.1364

    Article  CAS  PubMed  Google Scholar 

  23. Sethi S, Fervenza FC (2012) Membranoproliferative glomerulonephritis--a new look at an old entity. N Engl J Med 366:1119–1131. https://doi.org/10.1056/NEJMra1108178

    Article  CAS  PubMed  Google Scholar 

  24. Fakhouri F, Frémeaux-Bacchi V, Noël LH, Cook HT, Pickering MC (2010) C3 glomerulopathy: a new classification. Nat Rev Nephrol 6:494–499

  25. Servais A, Noël LH, Roumenina LT, Le Quintrec M, Ngo S, Dragon-Durey MA, Macher MA, Zuber J, Karras A, Provot F, Moulin B, Grünfeld JP, Niaudet P, Lesavre P, Frémeaux-Bacchi V (2012) Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 82:454–464. https://doi.org/10.1038/ki.2012.63

    Article  CAS  PubMed  Google Scholar 

  26. Gewurz AT, Imherr SM, Strauss S, Gewurz H, Mold C (1983) C3 nephritic factor and hypocomplementaemia in a clinically healthy individual. Clin Exp Immunol 54:253–258

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Couser WG (2017) Primary membranous nephropathy. Clin J Am Soc Nephrol 12:983–997. https://doi.org/10.2215/CJN.11761116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Menon S, Valentini RP (2010) Membranous nephropathy in children: clinical presentation and therapeutic approach. Pediatr Nephrol 25:1419–1428. https://doi.org/10.1007/s00467-009-1324-5

    Article  PubMed  Google Scholar 

  29. Troyanov S, Wall CA, Miller JA, Scholey JW, Cattran DC (2004) Toronto glomerulonephritis registry group. Idiopathic membranous nephropathy: definition and relevance of a partial remission. Kidney Int 66:1199–1205. https://doi.org/10.1111/j.1523-1755.2004.00873.x

    Article  PubMed  Google Scholar 

  30. Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L, Voinescu C, Patel N, Pearce K, Hubank M, Stephens HA, Laundy V, Padmanabhan S, Zawadzka A, Hofstra JM, Coenen MJ, den Heijer M, Kiemeney LA, Bacq-Daian D, Stengel B, Powis SH, Brenchley P, Feehally J, Rees AJ, Debiec H, Wetzels JF, Ronco P, Mathieson PW, Kleta R (2011) Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med 364:616–626. https://doi.org/10.1056/NEJMoa1009742

    Article  CAS  PubMed  Google Scholar 

  31. Gupta G, Fattah H, Ayalon R, Kidd J, Gehr T, Quintana LF, Kimball P, Sadruddin S, Massey HD, Kumar D, King AL, Beck LH Jr (2016) Pre-transplant phospholipase A2 receptor autoantibody concentration is associated with clinically significant recurrence of membranous nephropathy post-kidney transplantation. Clin Transpl 30:461–469. https://doi.org/10.1111/ctr.12711

    Article  CAS  Google Scholar 

  32. Debiec H, Ronco P (2011) PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy. N Engl J Med 364:689–690. https://doi.org/10.1056/NEJMc1011678

    Article  CAS  PubMed  Google Scholar 

  33. Larsen CP, Messias NC, Silva FG, Messias E, Walker PD (2013) Determination of primary versus secondary membranous glomerulopathy utilizing phospholipase A2 receptor staining in renal biopsies. Mod Pathol 26:709–715. https://doi.org/10.1038/modpathol.2012.207

    Article  CAS  PubMed  Google Scholar 

  34. Qin W, Beck LH Jr, Zeng C, Chen Z, Li S, Zuo K, Salant DJ, Liu Z (2011) Anti-phospholipase A2 receptor antibody in membranous nephropathy. J Am Soc Nephrol 22:1137–1143. https://doi.org/10.1681/ASN.2010090967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoxha E, Harendza S, Zahner G, Panzer U, Steinmetz O, Fechner K, Helmchen U, Stahl RA (2011) An immunofluorescence test for phospholipase-a2-receptor antibodies and its clinical usefulness in patients with membranous glomerulonephritis. Nephrol Dial Transplant 26:2526–2532. https://doi.org/10.1093/ndt/gfr247

    Article  CAS  PubMed  Google Scholar 

  36. Tomas NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, Dolla G, Hoxha E, Helmchen U, Dabert-Gay AS, Debayle D, Merchant M, Klein J, Salant DJ, Stahl RAK, Lambeau G (2014) Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 371:2277–2287. https://doi.org/10.1056/NEJMoa1409354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noone DG, Iijima K, Parekh R (2018) Idiopathic nephrotic syndrome in children. Lancet 392:61–74. https://doi.org/10.1016/S0140-6736(18)30536-1

    Article  PubMed  Google Scholar 

  38. Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, Chugh SS (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17:117–122. https://doi.org/10.1038/nm.2261

    Article  CAS  PubMed  Google Scholar 

  39. Clement LC, Macé C, Avila-Casado C, Joles JA, Kersten S, Chugh SS (2014) Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med 20:37–46. https://doi.org/10.1038/nm.3396

    Article  CAS  PubMed  Google Scholar 

  40. Li JS, Chen X, Peng L, Wei SY, Zhao SL, Diao TT, He YX, Liu F, Wei QJ, Zhang QF, Li B (2015) Angiopoietin-like-4, a potential target of tacrolimus, predicts earlier podocyte injury in minimal change disease. PLoS One 10:e0137049. https://doi.org/10.1371/journal.pone.0137049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cara-Fuentes G, Segarra A, Silva-Sanchez C, Wang H, Lanaspa MA, Johnson RJ, Garin EH (2017) Angiopoietin-like-4 and minimal change disease. PLoS One 12:e0176198. https://doi.org/10.1371/journal.pone.0176198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldwich A, Burkard M, Olke M, Daniel C, Amann K, Hugo C, Kurts C, Steinkasserer A, Gessner A (2013) Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 24:906–916. https://doi.org/10.1681/ASN.2012020133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jain N, Khullar B, Oswal N, Banoth B, Joshi P, Ravindran B, Panda S, Basak S, George A, Rath S, Bal V, Sopory S (2016) TLR-mediated albuminuria needs TNFα-mediated cooperativity between TLRs present in hematopoietic tissues and CD80 present on non-hematopoietic tissues in mice. Dis Model Mech 9:707–717. https://doi.org/10.1242/dmm.023440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khullar B, Balyan R, Oswal N, Jain N, Sharma A, Abdin MZ, Bagga A, Bhatnagar S, Wadhwa N, Natchu UCM, George A, Rath S, Bal V, Sopory S (2018) Interaction of CD80 with Neph1: a potential mechanism of podocyte injury. Clin Exp Nephrol 22:508–516. https://doi.org/10.1007/s10157-017-1489-3

    Article  CAS  PubMed  Google Scholar 

  45. Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, Chen L, Ciancio G, Faridi MH, Behr D, Campbell KN, Chang JM, Chen HC, Oh J, Faul C, Arnaout MA, Fiorina P, Gupta V, Greka A, Burke GW 3rd, Mundel P (2013) Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 369:2416–2423. https://doi.org/10.1056/NEJMoa1304572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, Johnson RJ (2009) Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 20:260–266. https://doi.org/10.1681/ASN.2007080836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, Johnson RJ (2010) Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 78:296–302. https://doi.org/10.1038/ki.2010.143

    Article  CAS  PubMed  Google Scholar 

  48. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH (2014) Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol 29:2333–2340. https://doi.org/10.1007/s00467-014-2874-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cara-Fuentes G, Wei C, Segarra A, Ishimoto T, Rivard C, Johnson RJ, Reiser J, Garin EH (2014) CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr Nephrol 29:1363–1371. https://doi.org/10.1007/s00467-013-2679-1

    Article  PubMed  Google Scholar 

  50. Minamikawa S, Nozu K, Maeta S, Yamamura T, Nakanishi K, Fujimura J, Horinouchi T, Nagano C, Sakakibara N, Nagase H, Shima H, Noda K, Ninchoji T, Kaito H, Iijima K (2018) The utility of urinary CD80 as a diagnostic marker in patients with renal diseases. Sci Rep 8:17322. https://doi.org/10.1038/s41598-018-35798-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mishra OP, Kumar R, Narayan G, Srivastava P, Abhinay A, Prasad R, Singh A, Batra VV (2017) Toll-like receptor 3 (TLR-3), TLR-4 and CD80 expression in peripheral blood mononuclear cells and urinary CD80 levels in children with idiopathic nephrotic syndrome. Pediatr Nephrol 32:1355–1361. https://doi.org/10.1007/s00467-017-3613-8

    Article  PubMed  Google Scholar 

  52. Ling C, Liu X, Shen Y, Chen Z, Fan J, Jiang Y, Meng Q (2015) Urinary CD80 levels as a diagnostic biomarker of minimal change disease. Pediatr Nephrol 30:309–316. https://doi.org/10.1007/s00467-014-2915-3

    Article  PubMed  Google Scholar 

  53. Bhatia D, Sinha A, Hari P, Sopory S, Saini S, Puraswani M, Saini H, Mitra DK, Bagga A (2018) Rituximab modulates T- and B-lymphocyte subsets and urinary CD80 excretion in patients with steroid-dependent nephrotic syndrome. Pediatr Res 84:520–526. https://doi.org/10.1038/s41390-018-0088-7

    Article  CAS  PubMed  Google Scholar 

  54. Gonzalez Guerrico AM, Lieske J, Klee G, Kumar S, Lopez-Baez V, Wright AM, Bobart S, Shevell D, Maldonado M, Troost JP, Hogan MC, Nephrotic Syndrome Study Network Consortium (NEPTUNE) (2020) Urinary CD80 discriminates among glomerular disease types and reflects disease activity. Kidney Int Rep 5:2021–2031. https://doi.org/10.1016/j.ekir.2020.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ling C, Liu X, Shen Y, Chen Z, Fan J, Jiang Y, Meng Q (2018) Urinary CD80 excretion is a predictor of good outcome in children with primary nephrotic syndrome. Pediatr Nephrol 33:1183–1187. https://doi.org/10.1007/s00467-018-3885-7

    Article  PubMed  Google Scholar 

  56. Isom R, Shoor S, Higgins J, Cara-Fuentes G, Johnson RJ (2019) Abatacept in steroid-dependent minimal change disease and CD80-uria. Kidney Int Rep 4:1349–1353. https://doi.org/10.1016/j.ekir.2019.05.1155

    Article  PubMed  PubMed Central  Google Scholar 

  57. Garin EH, Reiser J, Cara-Fuentes G, Wei C, Matar D, Wang H, Alachkar N, Johnson RJ (2015) Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr Nephrol 30:469–477. https://doi.org/10.1007/s00467-014-2957-6

    Article  PubMed  Google Scholar 

  58. Larsen CP, Messias NC, Walker PD (2014) B7-1 immunostaining in proteinuric kidney disease. Am J Kidney Dis 64:1001–1003. https://doi.org/10.1053/j.ajkd.2014.07.023

    Article  PubMed  Google Scholar 

  59. Novelli R, Gagliardini E, Ruggiero B, Benigni A, Remuzzi G (2016) Any value of podocyte B7-1 as a biomarker in human MCD and FSGS? Am J Physiol Renal Physiol 310:F335–F341. https://doi.org/10.1152/ajprenal.00510.2015

    Article  CAS  PubMed  Google Scholar 

  60. Lee SW, Baek SH, Paik JH, Kim S, Na KY, Chae DW, Chin H (2017) Tubular B7-1 expression parallels proteinuria levels, but not clinical outcomes in adult minimal change disease patients. Sci Rep 7:41859. https://doi.org/10.1038/srep41859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cara-Fuentes G, Venkatareddy M, Verma R, Segarra A, Cleuren AC, Martínez-Ramos A, Johnson RJ, Garg P (2020) Glomerular endothelial cells and podocytes can express CD80 in patients with minimal change disease during relapse. Pediatr Nephrol 35:1887–1896. https://doi.org/10.1007/s00467-020-04541-3

    Article  PubMed  Google Scholar 

  62. Delville M, Baye E, Durrbach A, Audard V, Kofman T, Braun L, Olagne J, Nguyen C, Deschênes G, Moulin B, Delahousse M, Kesler-Roussey G, Beaudreuil S, Martinez F, Rabant M, Grimbert P, Gallazzini M, Terzi F, Legendre C, Canaud G (2016) B7-1 blockade does not improve post-transplant nephrotic syndrome caused by recurrent FSGS. J Am Soc Nephrol 27:2520–2527. https://doi.org/10.1681/ASN.2015091002

    Article  PubMed  Google Scholar 

  63. Sahali D, Pawlak A, Valanciuté A, Grimbert P, Lang P, Remy P, Bensman A, Guellaën G (2002) A novel approach to investigation of the pathogenesis of active minimal-change nephrotic syndrome using subtracted cDNA library screening. J Am Soc Nephrol 13:1238–1247

    Article  CAS  Google Scholar 

  64. Zhang SY, Kamal M, Dahan K, Pawlak A, Ory V, Desvaux D, Audard V, Candelier M, BenMohamed F, Matignon M, Christov C, Decrouy X, Bernard V, Mangiapan G, Lang P, Guellaën G, Ronco P, Sahali D (2010) c-mip impairs podocyte proximal signaling and induces heavy proteinuria. [published correction appears in]. Sci Signal 3:ra39. https://doi.org/10.1126/scisignal.2000678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouachi K, Moktefi A, Zhang SY, Oniszczuk J, Sendeyo K, Remy P, Audard V, Pawlak A, Ollero M, Sahali D (2018) Expression of CMIP in podocytes is restricted to specific classes of lupus nephritis. PLoS One 13:e0207066. https://doi.org/10.1371/journal.pone.0207066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McCarthy ET, Sharma M, Savin VJ (2010) Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 5:2115–2121. https://doi.org/10.2215/CJN.03800609

    Article  PubMed  Google Scholar 

  67. Sharma M, Zhou J, Gauchat JF, Sharma R, McCarthy ET, Srivastava T, Savin VJ (2015) Janus kinase 2/signal transducer and activator of transcription 3 inhibitors attenuate the effect of cardiotrophin-like cytokine factor 1 and human focal segmental glomerulosclerosis serum on glomerular filtration barrier. Transl Res 166:384–398. https://doi.org/10.1016/j.trsl.2015.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, McCarthy ET, Srivastava T, Domen J, Tormo A, Gauchat JF (2015) Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015:714964. https://doi.org/10.1155/2015/714964

    Article  PubMed  PubMed Central  Google Scholar 

  69. Savin VJ, McCarthy ET, Sharma R, Charba D, Sharma M (2008) Galactose binds to focal segmental glomerulosclerosis permeability factor and inhibits its activity. Transl Res 151:288–292. https://doi.org/10.1016/j.trsl.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  70. Sgambat K, Banks M, Moudgil A (2013) Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr Nephrol 28:2131–2135. https://doi.org/10.1007/s00467-013-2539-z

    Article  PubMed  Google Scholar 

  71. Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63. https://doi.org/10.1038/nm1696

    Article  CAS  PubMed  Google Scholar 

  72. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, Maiguel D, Karumanchi SA, Yap HK, Saleem M, Zhang Q, Nikolic B, Chaudhuri A, Daftarian P, Salido E, Torres A, Salifu M, Sarwal MM, Schaefer F, Morath C, Schwenger V, Zeier M, Gupta V, Roth D, Rastaldi MP, Burke G, Ruiz P, Reiser J (2011) Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 17:952–960. https://doi.org/10.1038/nm.2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wei C, Li J, Adair BD, Zhu K, Cai J, Merchant M, Samelko B, Liao Z, Koh KH, Tardi NJ, Dande RR, Liu S, Ma J, Dibartolo S, Hägele S, Peev V, Hayek SS, Cimbaluk DJ, Tracy M, Klein J, Sever S, Shattil SJ, Arnaout MA, Reiser J (2019) uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. J Clin Invest 129:1946–1959. https://doi.org/10.1172/JCI124793

    Article  PubMed  PubMed Central  Google Scholar 

  74. Meijers B, Maas RJ, Sprangers B, Claes K, Poesen R, Bammens B, Naesens M, Deegens JKJ, Dietrich R, Storr M, Wetzels JFM, Evenepoel P, Kuypers D (2014) The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int 85:636–640. https://doi.org/10.1038/ki.2013.505

    Article  CAS  PubMed  Google Scholar 

  75. Sinha A, Bajpai J, Saini S, Bhatia D, Gupta A, Puraswani M, Dinda AK, Agarwal SK, Sopory S, Pandey RM, Hari P, Bagga A (2014) Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int 85:649–658. https://doi.org/10.1038/ki.2013.546

    Article  CAS  PubMed  Google Scholar 

  76. Hodges GW, Bang CN, Wachtell K, Eugen-Olsen J, Jeppesen JL (2015) suPAR: a new biomarker for cardiovascular disease? Can J Cardiol 31:1293–1302. https://doi.org/10.1016/j.cjca.2015.03.023

    Article  PubMed  Google Scholar 

  77. Schlöndorff D (2014) Are serum suPAR determinations by current ELISA methodology reliable diagnostic biomarkers for FSGS? Kidney Int 85:499–501. https://doi.org/10.1038/ki.2013.549

    Article  CAS  PubMed  Google Scholar 

  78. Harel E, Shoji J, Abraham V, Miller L, Laszik ZG, King A, Dobi D, Szabo G, Hann B, Sarwal MM, Craik CS, Vincenti F (2020) Further evidence that the soluble urokinase plasminogen activator receptor does not directly injure mice or human Podocytes. Transplantation 104:54–60. https://doi.org/10.1097/TP.0000000000002930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cathelin D, Placier S, Ploug M, Verpont MC, Vandermeersch S, Luque Y, Hertig A, Rondeau E, Mesnard L (2014) Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J Am Soc Nephrol 25:1662–1668. https://doi.org/10.1681/ASN.2013040425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheung PK, Stulp B, Immenschuh S, Borghuis T, Baller JF, Bakker WW (1999) Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol 10:1700–1708

    Article  CAS  Google Scholar 

  81. Cheung PK, Klok PA, Baller JF, Bakker WW (2000) Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin. Kidney Int 57:1512–1520. https://doi.org/10.1046/j.1523-1755.2000.00996.x

    Article  CAS  PubMed  Google Scholar 

  82. Bakker WW, van Dael CML, Pierik LJWM, van Wijk JAE, Nauta J, Borghuis T, Kapojos JJ (2005) Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 20:1410–1415. https://doi.org/10.1007/s00467-005-1936-3

    Article  PubMed  Google Scholar 

  83. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, Mathieson PW, Bakker WW, Saleem MA (2008) Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 19:2140–2149. https://doi.org/10.1681/ASN.2007080940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fasano A (2012) Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin Gastroenterol Hepatol 10:1096–1100. https://doi.org/10.1016/j.cgh.2012.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trachtman H, Gipson DS, Lemley KV, Troost JP, Faul C, Morrison DJ, Vento SM, Ahn DH, Goldberg JD (2019) Plasma zonulin levels in childhood nephrotic syndrome. Front Pediatr 7:197. https://doi.org/10.3389/fped.2019.00197

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ajamian M, Steer D, Rosella G, Gibson PR (2019) Serum zonulin as a marker of intestinal mucosal barrier function: may not be what it seems. PLoS One 14:e0210728. https://doi.org/10.1371/journal.pone.0210728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weng FL, Shults J, Herskovitz RM, Zemel BS, Leonard MB (2005) Vitamin D insufficiency in steroid-sensitive nephrotic syndrome in remission. Pediatr Nephrol 20:56–63. https://doi.org/10.1007/s00467-004-1694-7

    Article  PubMed  Google Scholar 

  88. Barragry JM, France MW, Carter ND, Auton JA, Beer M, Boucher BJ, Cohen RD (1977) Vitamin-D metabolism in nephrotic syndrome. Lancet 2:629–632. https://doi.org/10.1016/s0140-6736(77)92498-9

    Article  CAS  PubMed  Google Scholar 

  89. Bennett MR, Pordal A, Haffner C, Pleasant L, Ma Q, Devarajan P (2016) Urinary vitamin D-binding protein as a biomarker of steroid-resistant nephrotic syndrome. Biomark Insights 11:1–6. https://doi.org/10.4137/BMI.S31633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bennett MR, Pleasant L, Haffner C, Ma Q, Haffey WD, Ying J, Wagner M, Greis KD, Devarajan P (2017) A novel biomarker panel to identify steroid resistance in childhood idiopathic nephrotic syndrome. Biomark Insights 12:1177271917695832. https://doi.org/10.1177/1177271917695832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suresh CP, Saha A, Kaur M, Kumar R, Dubey NK, Basak T, Tanwar VS, Bhardwaj G, Sengupta S, Batra VV, Upadhyay AD (2016) Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome. Clin Exp Nephrol 20:273–283. https://doi.org/10.1007/s10157-015-1162-7

    Article  CAS  PubMed  Google Scholar 

  92. Pérez V, López D, Boixadera E, Ibernón M, Espinal A, Bonet J, Romero R (2017) Comparative differential proteomic analysis of minimal change disease and focal segmental glomerulosclerosis. BMC Nephrol 18:49. https://doi.org/10.1186/s12882-017-0452-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Agrawal S, Merchant ML, Kino J, Li M, Wilkey DW, Gaweda AE, Brier ME, Chanley MA, Gooding JR, Sumner SJ, Klein JB, Smoyer WE, Midwest Pediatric Nephrology Consortium (2019) Predicting and defining steroid resistance in pediatric nephrotic syndrome using plasma proteomics. Kidney Int Rep 5:66–80. https://doi.org/10.1016/j.ekir.2019.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hao X, Liu X, Wang W, Ren H, Xie J, Shen P, Lin D, Chen N (2013) Distinct metabolic profile of primary focal segmental glomerulosclerosis revealed by NMR-based metabolomics. PLoS One 8:e78531. https://doi.org/10.1371/journal.pone.0078531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sedic M, Gethings LA, Vissers JP, Shockcor JP, McDonald S, Vasieva O, Lemac M, Langridge JI, Batinić D, Pavelić SK (2014) Label-free mass spectrometric profiling of urinary proteins and metabolites from paediatric idiopathic nephrotic syndrome. Biochem Biophys Res Commun 452:21–26. https://doi.org/10.1016/j.bbrc.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  96. Gooding JR, Agrawal S, McRitchie S, Acuff Z, Merchant ML, Klein JB, Smoyer WE, Sumner SJ, Midwest Pediatric Nephrology Consortium (2019) Predicting and defining steroid resistance in pediatric nephrotic syndrome using plasma metabolomics. Kidney Int Rep 5:81–93. https://doi.org/10.1016/j.ekir.2019.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ju W, Nair V, Smith S, Zhu L, Shedden K, Song PXK, Mariani LH, Eichinger FH, Berthier CC, Randolph A, Lai JY, Zhou Y, Hawkins JJ, Bitzer M, Sampson MG, Thier M, Solier C, Duran-Pacheco GC, Duchateau-Nguyen G, Essioux L, Schott B, Formentini I, Magnone MC, Bobadilla M, Cohen CD, Bagnasco SM, Barisoni L, Lv J, Zhang H, Wang HY, Brosius FC, Gadegbeku CA, Kretzler M, ERCB, C-PROBE, NEPTUNE, and PKU-IgAN Consortium (2015) Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci Transl Med 7:316ra193. https://doi.org/10.1126/scitranslmed.aac7071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hodgin JB, Nair V, Zhang H, Randolph A, Harris RC, Nelson RG, Weil EJ, Cavalcoli JD, Patel JM, Brosius FC 3rd, Kretzler M (2013) Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62:299–308. https://doi.org/10.2337/db11-1667

    Article  CAS  PubMed  Google Scholar 

  99. Tao J, Mariani L, Eddy S, Maecker H, Kambham N, Mehta K, Hartman J, Wang W, Kretzler M, Lafayette RA (2018) JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int 94:795–808. https://doi.org/10.1016/j.kint.2018.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Menon R, Otto EA, Hoover P, Eddy S, Mariani L, Godfrey B, Berthier CC, Eichinger F, Subramanian L, Harder J, Ju W, Nair V, Larkina M, Naik AS, Luo J, Jain S, Sealfon R, Troyanskaya O, Hacohen N, Hodgin JB, Kretzler M, Kpmp KPMP, Nephrotic Syndrome Study Network (NEPTUNE) (2020) Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 5:e133267. https://doi.org/10.1172/jci.insight.133267

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Cara-Fuentes.

Ethics declarations

Disclosures

The authors declare that they have no conflict of interest.

Additional information

Answers

1. e; 2. e; 3. a; 4. b; 5. d

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cara-Fuentes, G., Smoyer, W.E. Biomarkers in pediatric glomerulonephritis and nephrotic syndrome. Pediatr Nephrol 36, 2659–2673 (2021). https://doi.org/10.1007/s00467-020-04867-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04867-y

Keywords

Navigation