Skip to main content
Log in

Phylogenetic relationships in Stephanopinae: systematics of Stephanopis and Sidymella based on morphological characters (Araneae: Thomisidae)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2021

This article has been updated

Abstract

A matrix of 117 morphological characters scored for 77 terminal taxa was subjected to parsimony analysis under equal and implied weighting schemes and to Bayesian inference in order to test the relationships in and between Stephanopis and Sidymella species, as well as its implications for the systematics of the subfamily Stephanopinae. A sensitivity test was performed to evaluate nodal stability. Our results indicate the polyphyletism of both genera and the topologies obtained allowed the proposition of the following taxonomic acts: The “altifrons clade” is the only group considered as Stephanopis (stricto sensu), with species restricted to the Australian region; most species from the Neotropical region, hitherto attributed to this genus, formed the well-supported “pentacantha clade”, while two of them, restricted to Central America, were recovered as the “championi clade”. The latter shows significative evidences for the revalidation of Paratobias gen. rev.; the “cambridgei clade” emerged with I. punctata nested within, having all its component species transferred to Isala. None of the Sidymella species with Australian distribution seems to be part of this genus, which occurs in fact only in the Neotropical region and is closely related to Coenypha. This latter has an increment of three species transferred from Stephanopis. Aside from the “lucida clade”, which is considered here as Sidymella (stricto sensu), three other groups and a single species emerged apart from this genus: the “hirsuta clade”, “trapezia clade”, “angularis clade” and Si. rubrosignata. Morphological evidences seem to justify the proposition of all these groups as new genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Change history

References

  • Benjamin, S. P. (2011). Phylogenetics and comparative morphology of crab spiders (Araneae: Dionycha, Thomisidae). Zootaxa, 3080, 1–108.

    Article  Google Scholar 

  • Benjamin, S. P. (2013). On the crab spider genus Angaeus Thorell, 1881 and its junior synonym Paraborboropactus Tang and Li, 2009 (Araneae: Thomisidae). Zootaxa, 3636, 71–80.

    Article  Google Scholar 

  • Benjamin, S. P. (2015). On the African crab spider genus Geraesta Simon, 1889 (Araneae: Thomisidae). African Invertebrates, 56, 309–318.

    Article  Google Scholar 

  • Benjamin, S. P. (2016). Revision of Cebrenninus Simon, 1887 with description of one new genus and six new species (Araneae: Thomisidae). Revue Suisse Zoologie, 123, 179–200.

    Google Scholar 

  • Benjamin, S. P. (2017). A new species of Angaeus from Malaysia with possible affinity to related genera within Stephanopinae (Araneae: Thomisidae). Zootaxa, 4337, 297–300.

    Article  PubMed  Google Scholar 

  • Benjamin, S. P., Dimitrov, D., Gillespie, R. G., & Hormiga, G. (2008). Family ties: molecular phylogeny of crab spiders (Araneae: Thomisidae). Cladistics, 24, 708–722.

    Article  Google Scholar 

  • Bradley, H. B. (1871). Descriptions of eight new species of Stephanopis (Cambridge). Transactions of the Entomological Society of New South Wales, 2, 233–238.

    Google Scholar 

  • Bryant, E.B. (1933). Notes on types of Urquhart’s spiders. Records of the Canterbury Museum, 4, 1–27.

  • Dias, S. C., & Brescovit, A. D. (2003). Notes on the behavior of Pachistopelma rufonigrum Pocock (Araneae, Theraphosidae, Aviculariinae). Revista Brasileira de Zoologia, 20, 13–17.

    Article  Google Scholar 

  • Gawryszewski, F. M. (2014). Evidence suggests that modified setae of the crab spiders Stephanopis spp. fasten debris from the background. Zoomorphology, 133, 205–215.

    Article  Google Scholar 

  • Goldsbrough, C., Hochuli, D., & Shine, R. (2004). Fitness benefits of retreat-site selection: spiders, rocks, and thermal cues. Ecology, 85, 1635–1641.

    Article  Google Scholar 

  • Goloboff, P. (1999). Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics, 15, 415–428.

    Article  Google Scholar 

  • Goloboff, P., & Farris, J. (2001). Methods for quick consensus estimation. Cladistics, 17, S26–S34.

    Article  Google Scholar 

  • Goloboff, P. A., Carpenter, J. M., Arias, J. S., & Miranda-Esquivel, D. R. (2008b). Weighting against homoplasy improves phylogenetic analysis of morphological data sets. Cladistics, 24, 758–773.

    Article  Google Scholar 

  • Goloboff, P. A., Farris, J. S., Källersjö, M., Oxelman, B., Ramírez, M., & Szumik, C. A. (2003). Improvements to resampling measures of group support. Cladistics, 19, 324–332.

    Article  Google Scholar 

  • Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008a). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.

    Article  Google Scholar 

  • Goloboff, P. A., Galvis, A. T., & Arias, J. S. (2018a). Parsimony and model-based phylogenetic methods for morphological data: comments on O'Reilly et al. Palaeontology, 61, 625–630.

    Article  Google Scholar 

  • Goloboff, P. A., Torres, A., & Arias, S. (2018b). Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics, 34, 407–437.

    Article  Google Scholar 

  • Koch, L. (1874). Die Arachniden Australiens. Nürnberg, DE: Verlag von Bauer & Raspe.

    Google Scholar 

  • Lise, A.A. (1973). Contribuição ao conhecimento do gênero Sidyma no Brasil, com descrição de uma nova espécie (Araneae-Thomisidae). Iheringia, 43, 3–47.

  • Machado, M., Teixeira, R. A., & Lise, A. A. (2015). Taxonomic notes on the crab spider genus Tobias Simon, 1895 (Araneae, Thomisidae, Stephanopinae). Zootaxa, 4034, 565–576.

    Article  PubMed  Google Scholar 

  • Machado, M., Teixeira, R. A., & Lise, A. A. (2017). Cladistic analysis supports the monophyly of the Neotropical crab spider genus Epicadus and its senior synonymy over Tobias (Araneae: Thomisidae). Invertebrate Systematics, 31, 442–455.

    Article  Google Scholar 

  • Machado, M., Teixeira, R. A., & Lise, A. A. (2018). There and back again: more on the taxonomy of the crab spider genus Epicadus (Thomisidae: Stephanopinae). Zootaxa, 4382, 501–530.

    Article  PubMed  Google Scholar 

  • Machado, M., Guzati, C., Viecelli, R., Molina-Gómez, D., & Teixeira, R. A. (2019a). A taxonomic review of the crab spider genus Sidymella (Araneae, Thomisidae) in the Neotropics. Zoosystematics and. Evolution, 95, 319–344.

    Article  Google Scholar 

  • Machado, M., Teixeira, R. A., & Milledge, G. A. (2019b). On the Australian bark crab spiders genus Stephanopis: taxonomic review and description of seven new species (Araneae: Thomisidae: Stephanopinae). Records of the Australian Museum, 71, 217–276.

    Article  Google Scholar 

  • Mello-Leitão, C. F. (1929). Aphantochilidas e Thomisidas do Brasil. Rio de Janeiro, BR: Archivos do Museu Nacional.

    Google Scholar 

  • Mirande, J. M. (2009). Weighted parsimony phylogeny of the family Characidae (Teleostei: Characiformes). Cladistics, 25, 574–613.

    Article  Google Scholar 

  • Morrone, J. J. (1994). Distributional patterns of Rhytirrhinini (Coleoptera: Curculionidae) and the historical relationships of the Andean provinces. Global Ecology and Biogeography Letters, 4, 188–194.

    Article  Google Scholar 

  • Morrone, J. J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa, 3782, 1–110.

    Article  PubMed  Google Scholar 

  • Morrone, J. J. (2015). Biogeographical regionalisation of the Andean region. Zootaxa, 3936, 207–236.

    Article  PubMed  Google Scholar 

  • Nixon, K. C. (1999). The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics, 15, 407–414.

    Article  Google Scholar 

  • O’Reilly, J., Puttick, M. N., Pisani, D., & Donoghue, P. C. J. (2018). Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Paleaontology, 61, 105–118.

    Article  Google Scholar 

  • Pickard-Cambridge, O. (1869). Descriptions and sketches of some new species of Araneida, with characters of a new genus. Annals and Magazine of Natural History, 3, 52–74.

    Article  Google Scholar 

  • Prado, A. W., Baptista, R. L. C., & Machado, M. (2018). Taxonomic review of Epicadinus Simon, 1895 (Araneae: Thomisidae). Zootaxa, 4459, 201–234.

    Article  PubMed  Google Scholar 

  • Puttick, M. N., O’Reilly, J. E., Pisani, D., & Donoghue, P. C. J. (2019). Probabilistic methods outperform parsimony in the phylogenetic analysis of data simulated without a probabilistic model. Palaeontology, 62, 1–17.

    Article  Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 5, 901–904.

    Article  Google Scholar 

  • Ramírez, M. J. (2014). The morphology and phylogeny of dionychan spiders (Araneae: Araneomorphae). Bulletin of the American Museum of Natural History, 390, 1–374.

    Article  Google Scholar 

  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva-Moreira, T., & Machado, M. (2016). Taxonomic revision of the crab spider genus Epicadus Simon, 1895 (Arachnida: Araneae: Thomisidae) with notes on related genera of Stephanopinae Simon, 1895. Zootaxa, 4147, 281–310.

    Article  PubMed  Google Scholar 

  • Simon, E. (1895). Histoire naturelle des araignées. Paris, FR: Librairie Encyclopédique de Roret.

    Google Scholar 

  • Simon, E. (1903). Histoire naturelle des araignées. Paris, FR: Librairie Encyclopédique de Roret.

    Google Scholar 

  • Sirvid, P. J., Moore, N. E., Chambers, G. K., & Prendergast, K. (2013). A preliminary molecular analysis of phylogenetic and biogeographic relationships of New Zealand Thomisidae (Araneae) using a multi-locus approach. Invertebrate Systematics, 27, 655–672.

    Article  Google Scholar 

  • Smith, M. R. (2019). Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biological Letters, 15, 20180632.

    Article  Google Scholar 

  • Teixeira, R. A., Campos, L. A., & Lise, A. A. (2014). Philogeny of Aphantochilinae and Strophinae sensu Simon (Araneae; Thomisidae). Zoologica Scripta, 43, 65–78.

    Article  Google Scholar 

  • Weiler, L., Ferrari, A., & Grazia, J. (2016). Phylogeny and biogeography of the South American subgenus Euschistus (Lycipta) Stål (Heteroptera: Pentatomidae: Carpocorini). Insect Systematics and Evolution, 47, 313–346.

    Article  Google Scholar 

  • Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida-Silva, L., Alvarez-Padilla, F., Arnedo, M. A., Benavides Silva, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasan, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J., Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick, N. I., Polotow, D., Silva-Dávila, D., Scharff, N., Szűts, T., Ubick, D., Vink, C. J., Wood, H. M., & Zhang, J. (2017). The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33, 574–616.

    Article  Google Scholar 

  • Maddison, W.P. & Maddison, D.R. (2019). Mesquite: a modular system for evolutionary analysis. Version 3.6. http://mesquiteproject.org. Accessed 18 November 2019.

  • Nixon, K. C. (1999–2004). Winclada (BETA) ver. Asado 1.89. http://www.cladistics.com/about_winc.htm. Accessed 20 March 2014.

  • World Spider Catalog. (2020). World Spider Catalog version 21.0. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 02 June 2020.

Download references

Acknowledgements

The authors would like to thank all dear colleagues and curators for the specimens provided for this study. Special thanks are given to Dr. Barbara Baehr, Dr. Stuart Longhorn and Dr. Cristian J. Grismado for the examinations and photograph parts of the type material deposited in European institutions. The first author is especially thankful to Dr. Robert Raven and Dr. Graham Milledge, who granted the material, space and total access to the collection of the Queensland Museum and Australian Museum, respectively. We thank the anonymous reviewers for their insightful comments and suggestions that improved the quality of the present work.

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Machado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The legends of Figs. 2, 3, 4, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20 and 21 were shown in the wrong order. The image of Fig. 2 belongs to Fig. 3 and vice versa. These has been corrected.

Supplementary Information

ESM 1

(NEX 357 kb)

ESM 2

(RUN 231 bytes)

ESM 3

(RUN 4 kb)

ESM 4

(RUN 1 kb)

ESM 5

(XLSX 46 kb)

Appendix

Appendix

Fig. 8
figure 8

Characters relative to dorsal habitus and prosoma of specimens sampled in the present analysis: a Stephanopis lata, frontal view. b Sidymella excavata, frontal view. c Stephanopis pentacanha, carapace. d Epicadinus trispinosus, carapace. e Tmarus polyandrus, carapace. f Isala arenata comb. nov., dorsal habitus. g Epicadus granulatus, sternum. h Borboropactus nyerere, sternum

Fig. 9
figure 9

Characters relative to carapace and sternum of specimens sampled in the present analysis: a Sidymella bicuspidata, sternum. b Epicadus caudatus, sternum. c Onocolus intermedius, sternum. d Geraesta hirta (white arrows indicate pointed setae; black arrows indicate filamentous setae). e Sidymella trapezia, sternum. f Phrynarachne ceylonica, sternum. g Stephanopis macrostyla, prosoma. h Isala cambridgei comb. nov., prosoma

Fig. 10
figure 10

Characters relative to prosoma of specimens sampled in the present analysis: a Epicadus caudatus, frontal view. b Epicadus heterogaster, carapace. c Epicadus taczanowskii, frontal view. d Sidymella bicuspidata. e Tmarus elongatus, lateral view. f Epicadus heterogaster, lateral view. g Stephanopis nana, frontal view (black arrows indicate lateral cephalic tubercles; white arrows indicate the not projected lateral margin of the clypeus). h Epicadus rubripes, frontal view (arrows indicate the lateral margins of the clypeus projected laterally)

Fig. 11
figure 11

Characters relative to prosoma and mouth parts of specimens sampled in the present analysis: a Stephanopis monulfi, frontal view. b Sidymella sp. 2, frontal view. c Stephanopis quinquetuberculata, lateral view. d Stephanopis pentacantha, e Epicadus taczanowskii, chelicerae (detail of papules). f Stephanopoides simoni, chelicerae. g Phrynarachne ceylonica, chelicerae. h Epicadus trituberculatus, chelicerae

Fig. 12
figure 12

Characters relative to carapace and mouth parts of specimens sampled in the present analysis: a Borboropactus cinerascens, labium and endites. b Sidymella kolpogaster, labium and endites. c Tmarus elongatus, frontal view. d Stephanopis altifrons, lateral view. e Isala rufiventris comb. nov., frontal view (arrows indicate cheliceral macrosetae). f Borboropactus cinerascens, frontal view. g Stephanopis barbipes, frontal view. h Stephanopis. bicornis, frontal view

Fig. 13
figure 13

Characters relative to carapace and legs of specimens sampled in the present analysis: a Stephanopis pentacantha, prosoma (detail of the procurve posterior eye row). b Paratobias championi sp. rev. (detail of the recurve posterior eye row). c Stephanopis fissifrons, prosoma (detail of the straight posterior eye row). d Stephanopis barbipes, prosoma (arrows indicate MOQ macrosetae). e Borporopactus cinerascens, prosoma (canoe-shaped tapetum). f Tmarus elongatus, tibiae I (trichobothria linearly distributed). g Stephanopis pentacantha, tibiae I (clustered trichobothria). h Coenypha edwardsi, leg I (arrows indicate mesial and ectal apophysis on femur)

Fig. 14
figure 14

Characters relative to legs of specimens sampled in the present analysis: a Sidymella kolpogaster (arrows indicate femoral setae). b Sidymella trapezia (arrow indicates femoral setae). c Stephanopis monulfi, leg I. d Stephanopis lata, leg I. e Epicadus heterogaster, femoral setiferous tubercles. f Epicadus caudatus, femoral setiferous tubercles. g Geraesta hirta, leg I. h Stephanopis pentacantha, leg I

Fig. 15
figure 15

Characters relative to legs, claws and opisthosoma of specimens sampled in the present analysis: a Epicadus heterogaster, patella I. b Stephanopis pentacantha, patella I. c Isala cambridgei comb. nov., male tibial brushes. d Epicadus caudatus, trichobothrium and duster-shaped setae. e Tmarus elongatus, tarsal claws of the right leg I (mesial view). f Epicadus taczanowskii, tarsal claws of the right leg I (ectal view). g Epicadus heterogaster, tibia I. h Epicadus trituberculatus, opisthosoma

Fig. 16
figure 16

Characters relative to opisthosoma of specimens sampled in the present analysis: a Stephanopis nana. b Stephanopis monulfi. c Sidymella hirsuta, d Stephanopis altifrons, cuspidate surface. e Tmarus elongatus, mazed-surface. f Isala rufiventris comb. nov., granular surface. g Isala punctata comb. nov., fingerprint surface. h Sidymella hirsuta, needle-shaped and filamentous setae

Fig. 17
figure 17

Characters relative to opisthosoma and female genitalia of specimens sampled in the present analysis: a Stephanopis lata (arrows indicate abdominal setae clusters). b Stephanopis monulfi, barbed setae. c Stephanopis monulfi, ventral view of the epigynal plate. d Coenypha antennata comb. nov., ventral view of the epigynal plate. e Sidymella hirsuta, dorsal view of the epigynal plate (arrows indicate the direction of entry into the copulatory ducts). f Coenypha antennata comb. nov., dorsal view of the epigynal plate (arrows indicate the direction of entry into the copulatory ducts). g Sidymella sp.1, dorsal view of the epigynal plate. h Epicadus trituberculatus, dorsal view of the epigynal plate

Fig. 18
figure 18

Characters relative to the female and male genitalia of specimens sampled in the present analysis: a Isala spiralis comb. nov., dorsal view of the epigynal plate. b Stephanopis armata, dorsal view of the epigynal plate. c Paratobias championi sp. rev., ventral view of the epigynal plate. d Coenypha nodosa comb. nov., ventral view of the epigynal plate. e Stephanopis lata, ventral view of the epigynal plate. f Borboropactus cinerascens, ventral view of the epigynal plate (arrows indicate the epigynal teeth). g Stephanopis flagellata, left palp. h Sidymella bicuspidata, left palp

Fig. 19
figure 19

Characters relative to the male genitalia of specimens sampled in the present analysis: a Epicadus trituberculatus, left palp. b Stephanopis pentacantha, left palp (arrow indicates the prolateral macrosetae). c Geraesta hirta, left palp. d Sidymella lucida, retrolateral view of left palp. e Borboropactus nyerere, left palp. f Isala cambridgei comb. nov., retrolateral view of left palp. g Stephanopis nigra, retrolateral view of left palp. h Stephanopis altifrons, detail of the RTA

Fig. 20
figure 20

Characters relative to the male genitalia of specimens sampled in the present analysis: a Stephanopis fissifrons, grooved RTA. b Sidymella lucida, nodose RTA. c Isala palliolata comb. nov., smooth RTA. d Epicadus taczanowskii, canoe-shaped RTAbvr. e Sidymella hirsuta, spoon-shaped RTAvbr. f Coenypha ditissima comb. nov., left palp. g Sidymella furcillata, left palp. h Isala spiralis comb. nov., left palp

Fig. 21
figure 21

Characters relative to the male genitalia of specimens sampled in the present analysis: a Stephanopis barbipes, left palp. b Isala cambridgei comb. nov., left palp. c Onocolus intermedius, left palp. d Sidymella longispina, left palp. e Paratobias sp. 1, left palp. f Tmarus polyandrus, left palp. g Stephanopis altifrons, left palp (lower arrows indicate the pair of ventral filamentous setae on tibiae). h Stephanopis bicornis, retrolateral view of left palp (detail of the cymbial setae brush)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, M., Teixeira, R.A. Phylogenetic relationships in Stephanopinae: systematics of Stephanopis and Sidymella based on morphological characters (Araneae: Thomisidae). Org Divers Evol 21, 281–313 (2021). https://doi.org/10.1007/s13127-020-00472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-020-00472-x

Keywords

Navigation