Skip to main content
Log in

A tunable metamaterial based on plasmon-induced transparency effect

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A Dirac semimetal-based metamaterial is proposed and numerically investigated. A transmission peak is achieved (71.5% amplitude, at resonance frequency 1.22 THz) based on plasmon-induced transparency effect (PIT) between Dirac semimetal strips. This PIT effect is excited by hybridization coupling of bright modes. This transmission peak is enhanced by adjusting horizontal or vertical distances between Dirac semimetal strips. Meanwhile, the resonance intensity and frequency of this PIT effect can be tuned through electrical regulation method (varying the Fermi energy). Moreover, magnetic field regulation method can also be applied in controlling the PIT effect (the direction of magnetic field is parallel or perpendicular). This PIT effect is sensitive to the refractive index of environmental medium. Correspondingly, the phase delay and group delay are also controlled through changing the Fermi energy of Dirac semimetal strips. This proposed PIT tunable metamaterial can be applied in switching, sensing, or other THz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmadivand, A., Sinha, R., Gerislioglu, B., Karabiyik, M., Pala, N., Shur, M.: Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt. Lett. 41, 5333–5336 (2016)

    Article  ADS  Google Scholar 

  • Al’tshuler, B.L., Aronov, A.G.: Magnetoresistance of thin films and of wires in a longitudinal magnetic field. JETP Lett. 33, 499–507 (1981)

    ADS  Google Scholar 

  • Appavoo, K., Haglund, R.F.: Polarization selective phase-change nanomodulator. Sci. Rep. 4, 6771–6776 (2014)

    Article  ADS  Google Scholar 

  • Buchnev, O., Podoliak, N., Malgosia, K., Zheludev, N.I., Fedotov, V.A.: Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch. Adv. Opt. Mater. 3, 674–679 (2015)

    Article  Google Scholar 

  • Burkov, A.A.: Negative longitudinal magnetoresistance in Dirac and Weyl metals. Phys. Rev. B 91, 245157–245178 (2015)

    Article  ADS  Google Scholar 

  • Dong, Z.G., Zhu, S.N., Liu, H.: Numerical simulations of negative-index refraction in wedge-shaped metamaterials. Phys. Rev. E 72, 016607–016610 (2005)

    Article  ADS  Google Scholar 

  • Driscoll, T., Kim, H.T., Chae, B.G., Kim, B.J., Lee, Y.W., Jokerst, N.M., Palit, S., Smith, D., Ventra, M.D., Basov, D.: Memory metamaterials. Science 325, 1518–1521 (2009)

    Article  ADS  Google Scholar 

  • Gorbar, E.V., Miransky, V.A., Shovkovy, I.: Chiral anomaly, dimensional reduction, and magnetoresistivity of Weyl and Dirac semimetals. Phys. Rev. B 89, 085126–085141 (2014)

    Article  ADS  Google Scholar 

  • He, X., Li, T., Wang, L., Wang, J.M., Tian, X.H., Jiang, J.X., Geng, Z.X.: Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures. Appl. Phys. A Mater. Sci. Process. 116, 799–804 (2014)

    Article  ADS  Google Scholar 

  • He, J., Wang, Q., Ding, P., Fan, C.Z., Arnaut, L.R., Liang, E.J.: Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces. Plasmonics 10, 1115–1121 (2015)

    Article  Google Scholar 

  • Jeong, Y.G., Han, S., Rhie, J., Kyoung, J.S., Choi, J.W., Park, N., Hong, S., Kim, B.J., Kim, H.T., Kim, D.S.: A vanadium dioxide metamaterial disengaged from insulator-to-metal transition. Nano Lett. 15, 6318–6323 (2015)

    Article  ADS  Google Scholar 

  • Jiang, J., Zhang, Q., Ma, Q., Yan, S.T., Wu, F.M., He, X.J.: Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials. Opt. Mater. Express 5, 1962–1971 (2015)

    Article  ADS  Google Scholar 

  • Jin, X.R., Park, J., Zheng, H., Seongjae, L.: Highlydispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling. Opt. Express 19, 21652–21657 (2011)

    Article  ADS  Google Scholar 

  • Kanda, N., Konishi, K., Kuwata-Gonokami, M.: Light-induced terahertz optical activity. Opt. Lett. 34, 3000–3004 (2009)

    Article  ADS  Google Scholar 

  • Kim, H., Charipar, N., Breckenfeld, E., Rosenberg, A., Piqué, A.: Active terahertz metamaterials based on the phase transition of VO2 thin films. Thin Soild Films. 596, 45–50 (2015)

    Article  ADS  Google Scholar 

  • Kotov, O.V., Lozovik, Y.E.: Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys. Rev. B 93, 235417–235427 (2016)

    Article  ADS  Google Scholar 

  • Liu, X.J., Gu, J.Q., Singh, R.J., Ma, Y.F., Zhu, J., Tian, Z., He, M.X., Han, J.G., Zhang, W.L.: Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode. APL 100, 131101–131105 (2012)

    Google Scholar 

  • Liu, T.T., Wang, H.X., Liu, Y., Long, S.X., Zao, Y., Chao, B.Z., Shu, Y.X.: Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial. Opt. Commun. 426, 629–634 (2018)

    Article  ADS  Google Scholar 

  • Manjappa, N., Turaga, S.P., Srivastava, Y.K., Bettiol, A.A., Singh, R.J.: Magnetic annihilation of the dark mode in a strongly coupled brightedark terahertz metamaterial. Opt. Lett. 42, 2106–2109 (2017)

    Article  ADS  Google Scholar 

  • Schnorrberger, U., Thompson, J.D., Trotzky, S., Pugatch, R., Davidson, N., Kuhr, S., Bloch, I.: Electromagnetically induced transparency and light storage in an atomic Mott insulator. Phys. Rev. Lett. 103, 033003–033007 (2009)

    Article  ADS  Google Scholar 

  • Shu, C., Chen, Q.G., Mei, J.S., Yin, J.H.: Dynamically tunable implementation of electromagnetically induced transparency with two coupling graphene-nanostrips in terahertz region. Opt. Commun. 411, 48–52 (2018)

    Article  ADS  Google Scholar 

  • Sun, D., Wu, Z.K., Divin, C., Li, X.B., Berger, C., de Heer, W.A., First, P.N., Norris, T.B.: Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402–157405 (2018)

    Article  ADS  Google Scholar 

  • Thompson, Z.J., Stickel, A., Jeong, Y.G., Han, S., Son, B.H., Paul, M.J., Lee, B., Mousavian, A., Seo, G., Kim, H.T., Lee, Y.S., Kim, D.S.: Terahertz-triggered phase transition and hysteresis narrowing in a nanoantenna patterned vanadium dioxide film. Nano Lett. 15, 5893–5898 (2015)

    Article  ADS  Google Scholar 

  • Timusk, T., Carbotte, J.P., Homes, C.C., Basov, D.N., Sharapov, G.: Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity. Phys. Rev. B 87, 235121–235128 (2013)

    Article  ADS  Google Scholar 

  • Xia, S.X., Zhai, X., Wang, L.L., Sun, B., Liu, J.Q., Wen, S.C.: Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Opt. Express 24, 17886–17899 (2016)

    Article  ADS  Google Scholar 

  • Xiao, S.Y., Wang, T., Liu, T.T., Yan, X.C., Li, Z., Xu, C.: Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126, 271–278 (2018)

    Article  Google Scholar 

  • Xu, Q., Su, X.Q., Chunmei, O.Y., Xu, N.N., Cao, W., Zhang, Y.P., Li, Q., Hu, C., Gu, J.Q., Tian, Z., Azad, A.K., Han, J.G., Zhang, L.: Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials. Opt. Lett. 41, 4562–4565 (2016)

    Article  ADS  Google Scholar 

  • Zhao, X., Yuan, C., Zhu, L., Yao, J.Q.: Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nanoscale 8, 15273–15280 (2016)

    Article  Google Scholar 

  • Zyuzin, A.A., Hook, M.D., Burkov, A.A.: Parallel magnetic field driven quantum phase transition in a thin topological insulator film. Phys. Rev. B 83, 245428–245432 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Key Research & Development Program (AB18126096) of Guangxi Province, Doctor’s Scientific Research Foundation (No. HZUBS201503), the Young and Middle Teachers’ Basic Ability Improvement Project of Guangxi (No. KY2016YB453), the Mathematical Support Autonomous Discipline Project of Hezhou University (No. 2016HZXYSX01), and the Innovation and Entrepreneurship Students Project of Hezhou University (Nos. 201611838018, 201911838062, 201911838071, 201911838179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Zhong, M. A tunable metamaterial based on plasmon-induced transparency effect. Opt Quant Electron 53, 25 (2021). https://doi.org/10.1007/s11082-020-02693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02693-y

Keywords

Navigation