Skip to main content
Log in

FOXG1 Directly Suppresses Wnt5a During the Development of the Hippocampus

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The Wnt signaling pathway plays key roles in various developmental processes. Wnt5a, which activates the non-canonical pathway, has been shown to be particularly important for axon guidance and outgrowth as well as dendrite morphogenesis. However, the mechanism underlying the regulation of Wnt5a remains unclear. Here, through conditional disruption of Foxg1 in hippocampal progenitors and postmitotic neurons achieved by crossing Foxg1fl/fl with Emx1-Cre and Nex-Cre, respectively, we found that Wnt5a rather than Wnt3a/Wnt2b was markedly upregulated. Overexpression of Foxg1 had the opposite effects along with decreased dendritic complexity and reduced mossy fibers in the hippocampus. We further demonstrated that FOXG1 directly repressed Wnt5a by binding to its promoter and one enhancer site. These results expand our knowledge of the interaction between Foxg1 and Wnt signaling and help elucidate the mechanisms underlying hippocampal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 1997, 389: 966–970.

    Article  CAS  PubMed  Google Scholar 

  2. Dorsky RI, Moon RT, Raible DW. Control of neural crest cell fate by the Wnt signalling pathway. Nature 1998, 396: 370–373.

    Article  CAS  PubMed  Google Scholar 

  3. Kiecker C, Niehrs C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 2001, 128: 4189–4201.

    Article  CAS  PubMed  Google Scholar 

  4. Houart C, Caneparo L, Heisenberg C, Barth K, Take-Uchi M, Wilson S. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 2002, 35: 255–265.

    Article  CAS  PubMed  Google Scholar 

  5. Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, Wang Y, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 2003, 302: 1984–1988.

    Article  CAS  PubMed  Google Scholar 

  6. Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 2005, 8: 34–42.

    Article  CAS  PubMed  Google Scholar 

  7. Vallee A, Lecarpentier Y, Guillevin R, Vallee JN. Opposite interplay between the canonical WNT/beta-catenin pathway and PPAR gamma: A potential therapeutic target in gliomas. Neurosci Bull 2018, 34: 573–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994, 8: 174–189.

    Article  CAS  PubMed  Google Scholar 

  9. Lee SM, Tole S, Grove E, McMahon AP. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 2000, 127: 457–467.

    Article  CAS  PubMed  Google Scholar 

  10. Shruster A, Offen D. Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer’s disease. Behav Brain Res 2014, 261: 193–201.

    Article  PubMed  Google Scholar 

  11. Xu N, Zhou WJ, Wang Y, Huang SH, Li X, Chen ZY. Hippocampal Wnt3a is necessary and sufficient for contextual fear memory acquisition and consolidation. Cereb Cortex 2015, 25: 4062–4075.

    Article  PubMed  Google Scholar 

  12. Stanganello E, Zahavi EE, Burute M, Smits J, Jordens I, Maurice MM, et al. Wnt signaling directs neuronal polarity and axonal growth. iScience 2019, 13: 318–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Katoh M. WNT2B: comparative integromics and clinical applications (Review). Int J Mol Med 2005, 16: 1103–1108.

    PubMed  Google Scholar 

  14. Katoh M, Kirikoshi H, Terasaki H, Shiokawa K. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway. Biochem Biophys Res Commun 2001, 289: 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  15. Kubo F, Takeichi M, Nakagawa S. Wnt2b inhibits differentiation of retinal progenitor cells in the absence of Notch activity by downregulating the expression of proneural genes. Development 2005, 132: 2759–2770.

    Article  CAS  PubMed  Google Scholar 

  16. Cho SH, Cepko CL. Wnt2b/beta-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development 2006, 133: 3167–3177.

    Article  CAS  PubMed  Google Scholar 

  17. Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005, 6: 351–362.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshikawa S, McKinnon RD, Kokel M, Thomas JB. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 2003, 422: 583–588.

    Article  CAS  PubMed  Google Scholar 

  19. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  20. Grove EA, Tole S, Limon J, Yip L, Ragsdale CW. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 1998, 125: 2315–2325.

    Article  CAS  PubMed  Google Scholar 

  21. Chen CM, Orefice LL, Chiu SL, LeGates TA, Hattar S, Huganir RL, et al. Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice. Proc Natl Acad Sci U S A 2017, 114: E619–E628.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Zhu J, Yang GY, Wang QJ, Qian L, Chen YM, et al. Dishevelled promotes axon differentiation by regulating atypical protein kinase C. Nat Cell Biol 2007, 9: 743–754.

    Article  CAS  PubMed  Google Scholar 

  23. Shafer B, Onishi K, Lo C, Colakoglu G, Zou Y. Vangl2 promotes Wnt/planar cell polarity-like signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance. Dev Cell 2011, 20: 177–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zou Y, Lyuksyutova AI. Morphogens as conserved axon guidance cues. Curr Opin Neurobiol 2007, 17: 22–28.

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Hutchins BI, Kalil K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J Neurosci 2009, 29: 5873–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, et al. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One 2011, 6: e18373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bian WJ, Miao WY, He SJ, Wan ZF, Luo ZG, Yu X. A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev Neurobiol 2015, 75: 805–822.

    Article  CAS  PubMed  Google Scholar 

  28. Godbole G, Shetty AS, Roy A, D’Souza L, Chen B, Miyoshi G, et al. Hierarchical genetic interactions between FOXG1 and LHX2 regulate the formation of the cortical hem in the developing telencephalon. Development 2018, 145.

  29. Du A, Wu X, Chen H, Bai QR, Han X, Liu B, et al. Foxg1 directly represses Dbx1 to confine the POA and subsequently regulate ventral telencephalic patterning. Cereb Cortex 2019, 29: 4968–4981.

    Article  PubMed  Google Scholar 

  30. Hanashima C, Li SC, Shen L, Lai E, Fishell G. Foxg1 suppresses early cortical cell fate. Science 2004, 303: 56–59.

    Article  CAS  PubMed  Google Scholar 

  31. Muzio L, Mallamaci A. Foxg1 confines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J Neurosci 2005, 25: 4435–4441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith R, Huang YT, Tian T, Vojtasova D, Mesalles-Naranjo O, Pollard SM, et al. The transcription factor Foxg1 promotes optic fissure closure in the mouse by suppressing Wnt8b in the nasal optic stalk. J Neurosci 2017, 37: 7975–7993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shimamura K, Rubenstein JL. Inductive interactions direct early regionalization of the mouse forebrain. Development 1997, 124: 2709–2718.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Song L, Zhou CJ. The canonical Wnt/beta-catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 2011, 349: 250–260.

    Article  CAS  PubMed  Google Scholar 

  35. Tian C, Gong Y, Yang Y, Shen W, Wang K, Liu J, et al. Foxg1 has an essential role in postnatal development of the dentate gyrus. J Neurosci 2012, 32: 2931–2949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu B, Xiao H, Zhao C. Forced expression of Foxg1 in the cortical hem leads to the transformation of cajal-retzius cells into dentate granule neurons. J Dev Biol 2018, 6.

  37. Goebbels S, Bormuth I, Bode U, Hermanson O, Schwab MH, Nave KA. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 2006, 44: 611–621.

    Article  CAS  PubMed  Google Scholar 

  38. Wu X, Gu X, Han X, Du A, Jiang Y, Zhang X, et al. A novel function for Foxm1 in interkinetic nuclear migration in the developing telencephalon and anxiety-related behavior. J Neurosci 2014, 34: 1510–1522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Su Y, Liu J, Yu B, Ba R, Zhao C. Brpf1 haploinsufficiency impairs dendritic arborization and spine formation, leading to cognitive deficits. Front Cell Neurosci 2019, 13: 249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu B, Liu J, Su M, Wang C, Chen H, Zhao C. Disruption of Foxg1 impairs neural plasticity leading to social and cognitive behavioral defects. Mol Brain 2019, 12: 63.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Han X, Gu X, Zhang Q, Wang Q, Cheng Y, Pleasure SJ, et al. FoxG1 directly represses dentate granule cell fate during forebrain development. Front Cell Neurosci 2018, 12: 452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, et al. The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 2006, 26: 5840–5848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blakely BD, Bye CR, Fernando CV, Prasad AA, Pasterkamp RJ, Macheda ML, et al. Ryk, a receptor regulating Wnt5a-mediated neurogenesis and axon morphogenesis of ventral midbrain dopaminergic neurons. Stem Cells Dev 2013, 22: 2132–2144.

    Article  CAS  PubMed  Google Scholar 

  44. Clark CE, Richards LJ, Stacker SA, Cooper HM. Wnt5a induces Ryk-dependent and -independent effects on callosal axon and dendrite growth. Growth Factors 2014, 32: 11–17.

    Article  CAS  PubMed  Google Scholar 

  45. Davis EK, Zou Y, Ghosh A. Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation. Neural Dev 2008, 3: 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Theil T, Aydin S, Koch S, Grotewold L, Ruther U. Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 2002, 129: 3045–3054.

    Article  CAS  PubMed  Google Scholar 

  47. Nordin N, Li M, Mason JO. Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells. Cloning Stem Cells 2008, 10: 37–48.

    Article  CAS  PubMed  Google Scholar 

  48. Fotaki V, Larralde O, Zeng S, McLaughlin D, Nichols J, Price DJ, et al. Loss of Wnt8b has no overt effect on hippocampus development but leads to altered Wnt gene expression levels in dorsomedial telencephalon. Dev Dyn 2010, 239: 284–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fotaki V, Price DJ, Mason JO. Wnt/beta-catenin signaling is disrupted in the extra-toes (Gli3(Xt/Xt)) mutant from early stages of forebrain development, concomitant with anterior neural plate patterning defects. J Comp Neurol 2011, 519: 1640–1657.

    Article  CAS  PubMed  Google Scholar 

  50. Harrison-Uy SJ, Pleasure SJ. Wnt signaling and forebrain development. Cold Spring Harb Perspect Biol 2012, 4: a008094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA. Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 2004, 131: 5639–5647.

    Article  CAS  PubMed  Google Scholar 

  52. Cuesta S, Funes A, Pacchioni AM. Social isolation in male rats during adolescence inhibits the Wnt/beta-catenin pathway in the prefrontal cortex and enhances anxiety and cocaine-induced plasticity in adulthood. Neurosci Bull 2020, 36: 611–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farias GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C, et al. Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 2009, 284: 15857–15866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC. Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci U S A 2010, 107: 21164–21169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 2004, 44: 109–120.

    Article  CAS  PubMed  Google Scholar 

  56. Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 2005, 46: 703–713.

    Article  CAS  PubMed  Google Scholar 

  57. Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 2006, 9: 723–727.

    Article  CAS  PubMed  Google Scholar 

  58. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 2011, 16: 1177–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang L, Luo XP. Plasticity and metaplasticity of lateral perforant path in hippocampal dentate gyrus in a rat model of febrile seizure. Acta Physiol Sin 2011, 63: 124–130.

    Google Scholar 

  60. Ji C, Zhu L, Chen C, Wang S, Zheng L, Li H. Volumetric changes in hippocampal subregions and memory performance in mesial temporal lobe epilepsy with hippocampal sclerosis. Neurosci Bull 2018, 34: 389–396.

    Article  PubMed  Google Scholar 

  61. Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 2007, 56: 1–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci 2004, 5: 844–852.

    Article  CAS  PubMed  Google Scholar 

  63. Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol 2005, 56: 207–234.

    Article  PubMed  Google Scholar 

  64. Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, et al. Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 2014, 82: 1129–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blackstad TW. Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 1956, 105: 417–537.

    Article  CAS  PubMed  Google Scholar 

  66. Blackstad TW. On the termination of some afferents to the hippocampus and fascia dentata; an experimental study in the rat. Acta Anat (Basel) 1958, 35: 202–214.

    Article  CAS  Google Scholar 

  67. Forster E, Zhao S, Frotscher M. Laminating the hippocampus. Nat Rev Neurosci 2006, 7: 259–267.

    Article  PubMed  CAS  Google Scholar 

  68. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011, 477: 171–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paluszkiewicz SM, Martin BS, Huntsman MM. Fragile X syndrome: the GABAergic system and circuit dysfunction. Dev Neurosci 2011, 33: 349–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu W, Sudhof TC. A neural circuit for memory specificity and generalization. Science 2013, 339: 1290–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferhat AT, Halbedl S, Schmeisser MJ, Kas MJ, Bourgeron T, Ey E. Behavioural phenotypes and neural circuit dysfunctions in mouse models of autism spectrum disorder. Adv Anat Embryol Cell Biol 2017, 224: 85–101.

    Article  PubMed  Google Scholar 

  72. Kortum F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 2011, 48: 396–406.

    Article  PubMed  CAS  Google Scholar 

  73. Pratt DW, Warner JV, Williams MG. Genotyping FOXG1 mutations in patients with clinical evidence of the FOXG1 syndrome. Mol Syndromol 2013, 3: 284–287.

    Article  CAS  PubMed  Google Scholar 

  74. Shoichet SA, Kunde SA, Viertel P, Schell-Apacik C, von Voss H, Tommerup N, et al. Haploinsufficiency of novel FOXG1B variants in a patient with severe mental retardation, brain malformations and microcephaly. Hum Genet 2005, 117: 536–544.

    Article  PubMed  Google Scholar 

  75. Le Guen T, Bahi-Buisson N, Nectoux J, Boddaert N, Fichou Y, Diebold B, et al. A FOXG1 mutation in a boy with congenital variant of Rett syndrome. Neurogenetics 2011, 12: 1–8.

    Article  PubMed  Google Scholar 

  76. Brunetti-Pierri N, Paciorkowski AR, Ciccone R, Della Mina E, Bonaglia MC, Borgatti R, et al. Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. Eur J Hum Genet 2011, 19: 102–107.

    Article  CAS  PubMed  Google Scholar 

  77. Yeung A, Bruno D, Scheffer IE, Carranza D, Burgess T, Slater HR, et al. 4.45 Mb microduplication in chromosome band 14q12 including FOXG1 in a girl with refractory epilepsy and intellectual impairment. Eur J Med Genet 2009, 52: 440–442.

  78. Tohyama J, Yamamoto T, Hosoki K, Nagasaki K, Akasaka N, Ohashi T, et al. West syndrome associated with mosaic duplication of FOXG1 in a patient with maternal uniparental disomy of chromosome 14. Am J Med Genet A 2011, 155A: 2584–2588.

    Article  PubMed  CAS  Google Scholar 

  79. Coullery RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway. Neurotoxicology 2016, 52: 150–161.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yiquan Wei and Li Liu for their assistance in the laboratory and with animal care, and other members of the laboratory for helpful discussions. This work was supported by grants from the National Natural Science Foundation of China (31930045 and 81870899) and the National Key R&D Program of China (2016YFA0501001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Zhao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y., Liu, B., Wu, X. et al. FOXG1 Directly Suppresses Wnt5a During the Development of the Hippocampus. Neurosci. Bull. 37, 298–310 (2021). https://doi.org/10.1007/s12264-020-00618-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00618-z

Keywords

Navigation