Skip to main content
Log in

Existence and uniqueness results for modeling jet flow of the antarctic circumpolar current

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we are concerned with the analysis of a mathematical model, a two point boundary value problem for a second-order differential equation, that is used to deal with the jet flow of the antarctic circumpolar current. We present some new existence and uniqueness results when the vorticity function satisfies either a Lipschitz condition or is continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Math. Phys. Eng. Sci. 473, 20170063 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Chu, J.: On a differential equation arising in geophysics. Monatshefte für Mathematik 187, 499–508 (2018)

    Article  MathSciNet  Google Scholar 

  3. Chu, J.: Monotone solutions of a nonlinear differential equation for geophysical fluid flows. Nonlinear Anal. 166, 144–153 (2018)

    Article  MathSciNet  Google Scholar 

  4. Chu, J.: On a nonlinear model for arctic gyres. Ann. Mat. Pura Appl. 197, 651–659 (2018)

    Article  MathSciNet  Google Scholar 

  5. Marynets, K.: A weighted Sturm-Liouville problem related to ocean flows. J. Math. Fluid Mech. 20, 929–935 (2018)

    Article  MathSciNet  Google Scholar 

  6. Marynets, K.: A nonlinear two-point boundary-value problem in geophysics. Monatshefte für Mathematik 188, 287–295 (2019)

    Article  MathSciNet  Google Scholar 

  7. Marynets, K.: Two-point boundary problem for modelling the jet flow of the Antarctic Circumpolar Current. Electron. J. Differ. Equ. 2018, 1–22 (2018)

    Article  MathSciNet  Google Scholar 

  8. Constantin, A.: Some three-dimensional nonlinear equatorial ows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  Google Scholar 

  9. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic in- ternal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  Google Scholar 

  10. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean ows, motivated by some observations of the Pacifc Equatorial Undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)

    Article  Google Scholar 

  11. Constantin, A., Johnson, R.S.: Large-scale oceanic currents as shallow water asymptotic solutions of the Navier-Stokes equation in rotating spherical coordinates. Deep Sea Res. Part II Top. Stud. Oceanogr. 160, 32–40 (2019)

    Article  Google Scholar 

  12. Constantin, A., Johnson, R.S.: Ekman-type solutions for shallow water ows on a rotating sphere: a new perspective on a classical problem. Phys. Fluids 31, 021401 (2019)

    Article  Google Scholar 

  13. Chu, J., Escher, J.: Steady periodic equatorial water waves with vorticity. Discrete Continuous Dyn. Syst. Ser. A 39, 4713–4729 (2019)

    Article  MathSciNet  Google Scholar 

  14. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  MathSciNet  Google Scholar 

  15. Henry, D., Martin, C.I.: Exact, free-surface equatorial flows with general stratification in spherical coordinates. Arch. Rat. Mech. Anal. 233, 497–512 (2019)

    Article  MathSciNet  Google Scholar 

  16. Hsu, H.C., Martin, C.I.: On the existence of solutions and the pressure function related to the Antarctic Circumpolar Current. Nonlinear Anal. Theory Methods Appl. 155, 285–293 (2017)

    Article  MathSciNet  Google Scholar 

  17. Martin, C.I., Quirchmayr, R.: Explicit and exact solutions concerning the Antarctic Circumpolar Current with variable density in spherical coordinates. J. Math. Phys. 60, 101505 (2019)

    Article  MathSciNet  Google Scholar 

  18. Matioc, A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A Math. Theor. 45, 365501 (2012)

    Article  MathSciNet  Google Scholar 

  19. Matioc, A.V.: An explicit solution for deep water waves with coriolis effects. J. Nonlinear Math. Phys. 19, 1240005 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the f-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    Article  MathSciNet  Google Scholar 

  21. Matioc, A.V., Matioc, B.V.: On periodic water waves with coriolis effects and isobaric streamlines. J. Nonlinear Math. Phys. 19, 1240009 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Whitworth III, T.: Monitoring the transport of the Antarctic circumpolar current at Drake Passage. J. Phys. Oceanogr. 13, 2045–2057 (1983)

    Article  Google Scholar 

  23. Whitworth III, T., Peterson, R.G.: The volume transport of the Antarctic Circumpolar Current from three-year bottom pressure measurements. J. Phys. Oceanogr. 15, 810–816 (1985)

    Article  Google Scholar 

  24. Bryden, H.L., Heath, R.A.: Energetic eddies at the northen edge of the antarctic circumpolar current in the southwest pacific. Prog. Oceanogr. 14, 65–87 (1985)

    Article  Google Scholar 

  25. Orsi, A.H., Whitworth III, T., Nowlin Jr., W.D.: On the meridional extent and fronts of the antarctic circumpolar current. Deep Sea Res. Part I Oceanogr. Res. Pap. 42, 641–673 (1995)

    Article  Google Scholar 

  26. Rintoul, S.R., Hughes, C., Olbers, D.: The Antarctic Circumpolar Current system, Ocean Circulation and Limate. Academnic Press, Singapore (2001)

    Google Scholar 

  27. Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2003)

    Article  MathSciNet  Google Scholar 

  28. Dijkstra, H.A.: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the large Scale Ocean Circulation and El Nino. Springer Science & Business Media, Berlin (2005)

    Google Scholar 

  29. Herbei, R., McKeague, I.W., Speer, K.G.: Gyres and jets: inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr. 38, 1180–1202 (2008)

    Article  Google Scholar 

  30. Wu, W.: Fluid Mechanics. Peking University Press, Peking (1982). (in Chinese)

    Google Scholar 

  31. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  32. Daners, D.: The Mercator and stereographic projections, and many in between. Am. Math. Mon. 119, 199–210 (2017)

    Article  MathSciNet  Google Scholar 

  33. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)

    Article  Google Scholar 

  34. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  Google Scholar 

  35. Marynets, K.: The Antarctic Circumpolar Current as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Deep Sea Res. Part II Top. Stud. Oceanogr. 160, 58–62 (2019)

    Article  Google Scholar 

  36. Li, Y.: Positive solutions of fourth-order boundary value problems with two parameters. J. Math. Anal. Appl. 281, 477–484 (2003)

    Article  MathSciNet  Google Scholar 

  37. Berger, M.S.: Nonlinearity and Functional Analysis. Academic Press, Singapore (1977)

    MATH  Google Scholar 

  38. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. American Mathematical Society, Philadelphia (2012)

    Book  Google Scholar 

  39. Fonda, A., Mawhin, J.: Iterative and variational methods for the solvability of some semilinear equations in Hilbert spaces. J. Differ. Equ. 98, 355–375 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fečkan, M., Wen, Q. et al. Existence and uniqueness results for modeling jet flow of the antarctic circumpolar current. Monatsh Math 194, 601–621 (2021). https://doi.org/10.1007/s00605-020-01493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01493-6

Keywords

Mathematics Subject Classification

Navigation