Skip to main content

Advertisement

Log in

An efficient diastereoselective synthesis of novel fused 5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-ones via one-pot three-component reaction

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Herein, a convenient and efficient synthesis of 7-benzoyl-6-(aryl)-6,7-dihydro-5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-one derivatives was achieved from the reaction of isoquinolinium N-ylides, aromatic aldehydes, and heterocyclic 1,3-dicarbonyl compounds via one-pot three-component diastereoselective domino reaction in good-to-excellent yields. The advantages of this protocol are easily available starting materials, operational simplicity, and avoidance of hazardous organic solvents and catalyst. The synthesized products were characterized by IR, 1H NMR, 13C NMR and mass spectra. Additionally, the conclusive structure of target compounds was confirmed by X-Ray diffraction analysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Eicher T, Hauptmann S (2003) The chemistry of heterocycles Structure, reactions, syntheses, and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV (2000) Handbook of heterocyclic chemistry, 2nd edn. Pergamon, Amsterdam

    Google Scholar 

  3. Joule JA, Mills K (2000) Heterocyclic chemistry, 4th edn. Oxford, Blackwell

    Google Scholar 

  4. Gangjee A, Devraj R, McGuire JJ, Kisliuk RL, Queener SF, Barrows LR (1994) Classical and nonclassical furo[2,3-d]pyrimidines as novel antifolates: synthesis and biological activities. J Med Chem 37:1169–1176. https://doi.org/10.1021/jm00034a015

    Article  CAS  PubMed  Google Scholar 

  5. Gangjee A, Zeng Y, McGuide JJ, Kisliuk RL (2005) Synthesis of classical, four-carbon bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 48:5329–5336. https://doi.org/10.1021/jm058213s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gangjee A, Li W, Lin L, Zeng Y, Ihnat M, Warnke LA, Green DW, Cody V, Pace J, Queener SF (2009) Design, synthesis, and X-ray crystal structures of 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosine kinase and dihydrofolate reductase inhibitors. Bioorg Med Chem 17:7324–7336. https://doi.org/10.1016/j.bmc.2009.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyazaki Y, Meada Y, Sato H, Nakano M, Mellor GW (2008) Rational design of 4-amino-5,6-diaryl-furo[2,3-d]pyrimidines as potent glycogen synthase kinase-3 inhibitors. Bioorg Med Chem Lett 18:1967–1971. https://doi.org/10.1016/j.bmcl.2008.01.113

    Article  CAS  PubMed  Google Scholar 

  8. Bhuiyan MMH, Rahman KMM, Hossain MK, Rahim MA, Hossain MI (2005) Fused pyrimidines. Part II: synthesis and antimicrobial activity of some furo[3,2-e]imidazo[1,2-c]pyrimidines and furo[2,3-d]pyrimidines. Croat Chem Acta 78(4):633–636

    CAS  Google Scholar 

  9. Gangjee A, Zeng Y, Ihnat M, Warnke LA, Green DW, Kisliuk RL, Lin FT (2005) Novel 5-substituted, 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosine kinase and dihydrofolate reductase inhibitors with antiangiogenic and antitumor activity. Bioorg Med Chem 13:5475–5491. https://doi.org/10.1016/j.bmc.2005.04.087

    Article  CAS  PubMed  Google Scholar 

  10. Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL (2000) Effect of C9-methyl substitution and C8-C9 conformational restriction on antifolate and antitumor activity of classical 5-substituted 2,4-diaminofuro[2,3-d]pyrimidine. J Med Chem 43:3125–3133. https://doi.org/10.1021/jm000130i

    Article  CAS  PubMed  Google Scholar 

  11. Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL (2004) Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 47:6893–6901. https://doi.org/10.1021/jm040123k

    Article  CAS  PubMed  Google Scholar 

  12. Babic MS, Ratkovic A, Jukic M, Glavas-Obrovac L, Drenjancevic D, Raic-Malic S (2017) Synthesis, cytostatic and antibacterial evaluations of novel 1,2,3-triazolyl-tagged pyrimidine and furo[2,3-d]pyrimidine derivatives. Croat Chem Acta 90(2):N1. https://doi.org/10.5562/cca3165

    Article  CAS  Google Scholar 

  13. Janeba Z, Balzarini J, Andrei G, Snoeck R, Clercq ED, Robins MJ (2005) Synthesis and biological evaluation of acyclic 3-[(2-Hydroxyethoxy)methyl] analogues of antiviral furo- and pyrrolo[2,3-d]pyrimidine nucleosides. J Med Chem 48:4690–4696. https://doi.org/10.1021/jm050291s

    Article  CAS  PubMed  Google Scholar 

  14. Amblard F, Aucagne V, Guenot P, Schinazi RF, Agrofoglio LA (2005) Synthesis and antiviral activity of novel acyclic nucleosides in the 5-alkynyl- and 6-alkylfuro[2,3-d]pyrimidine series. Bioorg Med Chem 13:1239–1248. https://doi.org/10.1016/j.bmc.2004.11.057

    Article  CAS  PubMed  Google Scholar 

  15. Robins MJ, Miranda K, Rajwanshi VK, Peterson MA, Andrei G, Snoeck R, Clercq ED, Balzarini J (2006) Synthesis and biological evaluation of 6-(Alkyn-1-yl)furo[2,3-d]pyrimidin-2(3H)-one base and nucleoside derivatives. J Med Chem 49:391–398. https://doi.org/10.1021/jm050867d

    Article  CAS  PubMed  Google Scholar 

  16. Kim SY, Kim DJ, Yang BS, Yoo KH (2007) Synthesis and biological evaluation of furo[2,3-d]pyrimidines as Akt1 kinase inhibitors. Bull Korean Chem Soc 28:1114–1118. https://doi.org/10.1002/chin.200749171

    Article  CAS  Google Scholar 

  17. Maeda Y, Nakano M, Sato H, Miyazaki Y, Schweiker SL, Smith JL, Truesdale AT (2004) 4-Acylamino-6-arylfuro[2,3-d]pyrimidines: potent and selective glycogen synthase kinase-3 inhibitors. Bioorg Med Chem Lett 4:3907–3911. https://doi.org/10.1016/j.bmcl.2004.05.064

    Article  CAS  Google Scholar 

  18. Batool I, Saeed A, Zia Qureshi I, Kalsoom S, Razzaq A (2016) Synthesis, molecular docking and biological evaluationof new thiazolopyrimidine carboxylates as potentialantidiabetic and antibacterial agents. Res Chem Intermed 42:1139–1163. https://doi.org/10.1007/s11164-015-2078-2

    Article  CAS  Google Scholar 

  19. Gupta SV, Baheti KG, Ganorkar SB, Dekhane D, Pawar S, Thore SN (2013) Synthesis and pharmacological investigation of novel 2-substituted-3-carboxamido-4H-pyrimidobenzothiazolederivatives as a new class of H1-antihistaminic agent. Med Chem Res 22:1065–1072. https://doi.org/10.1007/s00044-012-0100-4

    Article  CAS  Google Scholar 

  20. Den Boer JA, Vahlne JO, Post P, Heck AH, Daubenton F, Olbrich R (2000) Ritanserin as add-on medication to neuroleptic therapy for patients with chronic or subchronic schizophrenia. Hum Psychopharmacol Clin Exp 15(3):179–189. https://doi.org/10.1002/(SICI)1099-1077(200004)15:3%3c179:AID-HUP156%3e3.0.CO;2-N

    Article  Google Scholar 

  21. Jiang W, Sun J, Yan CG (2017) Diastereoselective synthesis of benzo[d]chromeno [30,40:3,4] pyrrolo[2,1-b] thiazoles via cycloaddition reaction of benzothiazolium salts with 3-nitrochromenes. RSC Adv 7:42387–42392. https://doi.org/10.1039/C7RA06548E

    Article  CAS  Google Scholar 

  22. Jin G, Sun J, Yang RY, Yan CG (2017) Stepwise cycloaddition reaction of N-phenacylbenzothiazolium bromides and nitroalkenes for tetrahydro-, dihydro- and benzo[d]pyrrolo[2,1-b]thiazoles. Sci Rep 7:46470. https://doi.org/10.1038/srep46470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun J, Zhang Y, Shi RG, Yan CG (2019) Selective synthesis of spirooxindoles via a two-step reaction of N-phenacylpyridinium bromide, 1,3-indanedione and N-alkylisatins. Org Biomol Chem 17:3978–3983. https://doi.org/10.1039/C9OB00166B

    Article  CAS  PubMed  Google Scholar 

  24. Bora U, Saikia A, Boruah RC (2003) A novel microwave-mediated one-pot synthesis of indolizines via a three-component reaction. Org Lett 5(4):435–438. https://doi.org/10.1021/ol020238n

    Article  CAS  PubMed  Google Scholar 

  25. Sun J, Zhang Y, Shen GL, Yan CG (2017) Molecular diversity of 1,3-dipolar cycloaddition of quinolinium ylides with isatylidene malononitriles. ChemistrySelect 2:10835–10839. https://doi.org/10.1002/slct.201702161

    Article  CAS  Google Scholar 

  26. Sun J, Jiang W, Yan CG (2019) Convenient construction of dibenzo[b, d]furanes and 2,6-diaryl-4-(2-hydroxyphenyl)pyridines via domino reaction of pyridinium ylides with 2-aryl-3-nitrochromenes. Org Chem Front 6:1428–1432. https://doi.org/10.1039/C9QO00079H

    Article  CAS  Google Scholar 

  27. Sasaki T, Kanematsu K, Yukimoto Y, Ochiai S (1971) Orientation in the 1,3-dipolar cycloaddition reactions of heteroaromatic nitrogen methylides with dipolarophiles. J Org Chem 36(6):813–818. https://doi.org/10.1021/jo00805a018

    Article  CAS  Google Scholar 

  28. Xia Z, Przewloka T, Koya K, Ono M, Chen S, Sun L (2006) Controlling chemoselectivity-application of DMF di-t-butyl acetal in the regioselective synthesis of 3-monosubstituted indolizines. Tetrahedron Lett 47:8817–8820. https://doi.org/10.1016/j.tetlet.2006.10.052

    Article  CAS  Google Scholar 

  29. Sun J, Shen GL, Huang Y, Yan CG (2017) Formation of diverse polycyclic spirooxindoles via three-component reaction of isoquinolinium salts, isatins and malononitrile. Sci Rep 7:41024. https://doi.org/10.1038/srep41024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen GL, Sun J, Yan CG (2015) Diastereoselective synthesis of spiro[benzo[d]pyrrolo[2,1-b]thiazole-3,3′-indolines] via cycloaddition reaction of N-phenacylbenzothiazolium bromides and 3-methyleneoxindoles. Org Biomol Chem 13:10929–10938. https://doi.org/10.1039/C5OB01374G

    Article  CAS  PubMed  Google Scholar 

  31. Liu R, Shi RG, Sun J, Yan CG (2017) A [3 + 2]–[4 + 2]–[3 + 2] cycloaddition sequence of isoquinolinium ylide. Org Chem Front 4:354–357. https://doi.org/10.1039/C6QO00615A

    Article  CAS  Google Scholar 

  32. Druta II, Andrei MA, Ganj CI, Aburel PS (1999) Synthesis of lndolizine derivatives by the reaction of 2-(2′-Pyridyi)-pyridinium yiides with ethylenic dipolarophiles. Tetrahedron 55:13063–13070. https://doi.org/10.1016/S0040-4020(99)00798-X

    Article  CAS  Google Scholar 

  33. Furdui B, Dinica R, Druta II, Demeunynck M (2006) Improved synthesis of cationic pyridinium-substituted indolizines. Synthesis 16:2640–2642. https://doi.org/10.1055/s-2006-942482

    Article  CAS  Google Scholar 

  34. Liu Y, Sun JW (2012) Copper(II)-catalyzed synthesis of benzo[f]pyrido[1,2-a] indole-6,11-dione derivatives via naphthoquinone difunctionalization reaction. J Org Chem 77:1191–1197. https://doi.org/10.1021/jo2023312

    Article  CAS  PubMed  Google Scholar 

  35. Osyanin VA, Osipov DV, Klimochkin YN (2013) Reactions of o-quinone methides with pyridinium methylides: a diastereoselective synthesis of 1,2- dihydronaphtho[2,1-b] furans and 2,3-dihydrobenzofurans. J Org Chem 78:5505–5520. https://doi.org/10.1021/jo400621r

    Article  CAS  PubMed  Google Scholar 

  36. Wang F, Shen Y, Hu H, Wang X, Wu H, Liu Y (2014) Copper(II)-catalyzed indolizines formation followed by dehydrogenative functionalization cascade to synthesize 1-bromoindolizines. J Org Chem 79(20):9556–9566. https://doi.org/10.1021/jo501626b

    Article  CAS  PubMed  Google Scholar 

  37. Allgäuer DS, Mayer P, Mayr H (2013) Nucleophilicity parameters of pyridinium ylides and their use in mechanistic analyses. J Am Chem Soc 135:15216–15224. https://doi.org/10.1021/ja407885h

    Article  CAS  PubMed  Google Scholar 

  38. Allgäuer DS, Mayr H (2013) One-pot two-step synthesis of 1-(ethoxycarbonyl)indolizines via pyridinium ylides. Eur J Org Chem 28:6379–6388. https://doi.org/10.1002/ejoc.201300784

    Article  CAS  Google Scholar 

  39. Belei D, Abuhaie C, Bicu E, Jones PG, Hopf H, Birsa LM (2012) A direct synthesis of octahydropyrrolo[2,1,5-cd]indolizin-6-one derivatives. Synlett 23:545–548. https://doi.org/10.1055/s-0031-1290337

    Article  CAS  Google Scholar 

  40. Kumar A, Srivastava S, Gupta G (2012) Cascade [4 + 1] annulation via more environmentally friendly nitrogen ylides in water: synthesis of bicyclic and tricyclic fused dihydrofurans. Green Chem 14:3269–3272. https://doi.org/10.1039/C2GC36276G

    Article  CAS  Google Scholar 

  41. Zangoui M, Esmaeili AA, Mague JT (2016) An unexpected diastereoselective synthesis of novel substituted pyridines via one-pot, four-component reaction. Synlett 27:1669–1673. https://doi.org/10.1055/s-0035-1561429

    Article  CAS  Google Scholar 

  42. Jannati S, Esmaeili AA (2018) Synthesis of novel spiro[benzo[4,5]thiazolo[3,2-a]chromeno[2,3-d]pyrimidine-14,3′-indoline]-1,2′,13(2H)-triones via three component reaction. Tetrahedron 74:2967–2972. https://doi.org/10.1016/j.tet.2018.04.092

    Article  CAS  Google Scholar 

  43. Jannati S, Esmaeili AA (2017) An efficient one-pot synthesis of highly functionalized benzylpyrazolyl pyrido[1,2-a] pyrimidine derivatives using CuFe2O4 nanoparticles under solvent-free conditions. Res Chem Intermed 43:6817–6833. https://doi.org/10.1007/s11164-017-3022-4

    Article  CAS  Google Scholar 

  44. Ustalar A, Yilmaz M (2017) Microwave assisted synthesis of 2,3-Dihydro-4H-benzo[4,5]thiazolo[3,2-a]furo[2,3-d]pyrimidin-4-onesand6,7-Dihydro-5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-ones using Mn(OAc)3. Tetrahedron Lett 58(6):516–519. https://doi.org/10.1016/j.tetlet.2016.12.067

    Article  CAS  Google Scholar 

  45. Langley WD (1929) Phenacyl bromide [acetophenone, α-bromo-]. Org Synth 9:20. https://doi.org/10.15227/orgsyn.009.0020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Research Council of Ferdowsi University of Mashhad is acknowledged for financial support (Grant No. 3/48721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ali Esmaeili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabibi, T., Esmaeili, A.A. & Mague, J.T. An efficient diastereoselective synthesis of novel fused 5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-ones via one-pot three-component reaction. Mol Divers 26, 183–190 (2022). https://doi.org/10.1007/s11030-020-10173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10173-4

Keywords

Navigation