Skip to main content
Log in

Half mode semi-hexagonal SIW antennas and arrays for cellular V2X communication

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, the authors have proposed semi-hexagonal half-mode Substrate Integrated Waveguide (SIW) antennas generated by splitting the hexagonal SIW cavity across two different lines of symmetry, type 1: the diametric line the joining the opposite vertices of the cavity and type 2: the line connecting the opposite edge centers of the cavity. The resultant line of separation exposes the radiating edge of the antennas, with the other edges lined with hollow metallic cylindrical vias. The antennas thus designed and fabricated on Arlon AD270 substrate have a gain of 5.8 dBi at the resonating frequency of 5.9 GHz. The proposed antennas are compounded to design linear 1 × 2 and 1 × 4 arrays. The resonating frequencies for both 1 × 2 and 1 × 4 linear arrays of type 1 is 5.9 GHz with respective gain of 8.27 dBi and 11.3 dBi, thereby providing a gain improvement of 2.47 dBi and 5.5 dBi over the single array element. The type 2 linear antenna arrays also resonate at 5.9 GHz for both 1 × 2 and 1 × 4 configurations exhibiting a gain of 8.2 dBi and 11.2 dBi respectively, thus providing a gain improvement of 2.4 dBi and 5.4 dBi over the single array element. The antennas find significant utility in Intelligent Transportation Systems (ITS) for vehicular communication using Cellular-V2X (C-V2X) technology with frequency of operation lying in the allocated IEEE 802.11p band. The antennas also find application in satellite communication in the C-band. The measured results of the fabricated prototype of the antenna arrays are found to bear a close agreement with the simulated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Awida MH, Fathy AE (2009) Substrate integrated waveguide Ku-band cavity-backed 2×2 microstrip patch array antenna. IEEE Antennas Wirel Propag Lett 8:1054–1056

    Article  Google Scholar 

  • Banerjee S, Rana B, Parui SK (2016) Substrate integrated waveguide based triangular antenna arrays. Microw Opt Technol Lett 58(3):675–679

    Article  Google Scholar 

  • Bauer L, Reiss EL (1978) Cutoff wavenumbers and modes of hexagonal waveguides. Soc Indust Appl Math J Appl Math 35(3):508–514

    Article  MathSciNet  Google Scholar 

  • Bohorquez JC, Pedraza HAF, Pinzon ICH, Castiblanco JA, Pena N, Guarnizo HF (2009) Planar substrate integrated waveguide cavity-backed antenna. IEEE Antennas Wirel Propag Lett 8:1139–1142

    Article  Google Scholar 

  • Chen J, Wu B, Wei L, Jiang LW, Liang CH (2011) A compact hexagonal dual-band substrate integrated waveguide filter based on extracted-pole technique. Microw Opt Technol Lett 53(3):562–565

    Article  Google Scholar 

  • Cheng J, Rui L, Alphones A, Bao X (2013) Quarter-mode substrate integrated waveguide and its application to antennas design. IEEE Trans Antennas Propag 61(6):2921–2928

    Article  Google Scholar 

  • Chongdar P, Mukherjee S, Biswas A, Srivastava K V (2013) Asymmetric Dual Mode Band-pass Filter Design using Substrate Integrated Hexagonal Cavity (SIHC). In: Proceedings of the IEEE Applied Electromagnetics Conference (AEMC), Bhubaneswar, India, pp 1–2

  • Chongdar P, Mukherjee S, Srivastava K V, Biswas A (2013) Design of Dual Mode Substrate Integrated Hexagonal Cavity (SIHC) Filter for X-band Application. In: Proceedings of the Asia-Pacific Microwave Conference (APMC), Seoul, Korea, pp 942–944

  • Chongdar P, Srivastava KV, Biswas A (2014) Realisation of controllable transmission zeroes by the perturbation technique for designing dual-mode filter using substrate integrated hexagonal cavity. IET Microw Antennas Propag 8(6):451–457

    Article  Google Scholar 

  • Dashti H, Neshati MH (2014a) Development of Low-profile patch and semi-circular SIW cavity Hybrid antennas. IEEE Trans Antennas Propag 62(9):4481–4488

    Article  Google Scholar 

  • Dashti H, Neshati MH (2014b) Comparative investigation of Half-mode SIW cavity and Microstrip Hybrid antenna using different patch shapes. IJE Trans A 27:1573–1580

    Google Scholar 

  • Deslandes D, Wu K (2003) Single-substrate integration technique of planar circuits and waveguide filters. IEEE Trans Microw Theory Tech 51(2):593–596

    Article  Google Scholar 

  • Deslandes D, Wu K (2005) Substrate integrated waveguide leaky wave antenna: concept and design considerations. In: Proceedings of the Asia-Pacific Microwave Conference (APMC’05), Suzhou, China

  • Deslandes D, Wu K (2006) Accurate modeling, wave mechanisms and design considerations of a substrate integrated waveguide. IEEE Trans Microw Theory Tech 54(6):2516–2526

    Article  Google Scholar 

  • Eichler S (2007) Performance Evaluation of the IEEE 802.11p WAVE Communication Standard. In: Proceedings of the IEEE Vehicular Technology Conference (VTC-2007), Baltimore, MD, USA, pp 2199–2203

  • Hirokawa J, Ando M (1998) Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Trans Antennas Propag 46(5):625–630

    Article  Google Scholar 

  • Jiang D, Delgrossi L (2008) IEEE 802.11p: Towards an International Standard for Wireless Access in Vehicular Environments. In: Proceedings of the IEEE Vehicular Technology Conference (VTC-2008), Calgary, AB, Canada, pp 2036–2040

  • Lai QH, Hong W, Kuai ZQ, Zhang YS, Wu K (2009) Half-mode substrate integrated waveguide transverse slot array antennas. IEEE Trans Antennas Propag 57(4):1064–1072

    Article  Google Scholar 

  • Lai Q, FumeauxCh HW, Vahldieck R (2009) Characterization of the propagation properties of the half-mode substrate integrated waveguide. IEEE Trans Microw Theory Tech 57(8):1996–2004

    Article  Google Scholar 

  • Luo GQ, Hu ZF, Dong XL, Sun LL (2008) Planar slot antenna backed by substrate integrated waveguide cavity. IEEE Antennas Wirel Propag Lett 7:236–239

    Article  Google Scholar 

  • Majumdar M, Alphones A (2015) Eighth mode substrate integrated resonator antenna at 2.4 GHz. IEEE Antennas Wirel Propag Lett 15:853–856

    Article  Google Scholar 

  • Munson R (1974) Conformal microstrip antennas and microstrip phased arrays. IEEE Trans Antennas Propag 22(1):74–78. https://doi.org/10.1109/TAP.1974.1140723

    Article  Google Scholar 

  • Papathanassiou A, Khoryaev A (2017) Cellular V2X as the essential enabler of superior global connected transportation services. IEEE 5G Tech Focus 1(2)

  • Task Group p (2016) IEEE Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services. IEEE Std 1609.3–2016 (Revision of IEEE Std 1609.3–2010), pp 1–160

  • Uchimura H, Takenoshita T, Fujii M (2001) Effect of superstrate on radiated field of probe fed microstrip patch antenna. IEE Proc 148(3):141–146

    Google Scholar 

  • Vinel A (2012) 3GPP LTE versus IEEE 80211p/WAVE: which technology is able to support cooperative vehicular safety applications? IEEE Wirel Commun Lett 1(2):125–128

    Article  Google Scholar 

  • Wang H, Fang DG, Zhang B, Che WQ (2010) Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas. IEEE Trans Antennas Propag 58(3):640–647

    Article  Google Scholar 

  • Xu F, Wu K (2005) Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans Microw Theory Tech 53(1):66–73

    Article  Google Scholar 

  • Xu J, Hong W, Tang H, Kuai Z, Wu K (2008) Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter wave applications. IEEE Antennas Wirel Propag Lett 7:85–88

    Article  Google Scholar 

  • Xu ZQ, Shi Y, Wang P, Liao JX, Wei XB (2012) Substrate integrated waveguide (SIW) filter with hexagonal resonator. J Electromagnet Waves Appl (Taylor & Francis) 26(11–12):1521–1527

    Article  Google Scholar 

  • Xu M J, Chen K, Xu Z Q (2014) Multilayer dual-mode filter based on substrate integrated hexagonal cavity (SIHC). In: Proceedings of the IEEE Int. Conf. on Electronic Packaging Technology (ICEPT), China, pp 1400–1403

  • Yan L, Hong W, Hua G, Chen JX, Wu K, Cui TJ (2004) Simulation and experiment on SIW slot array antennas. IEEE Microw Wirel Comp Lett 14(9):446–448

    Article  Google Scholar 

  • Zhang G, Xu Z (2014) Development of circularly polarised antennas based on dual-mode hexagonal cavity. In: Proceedings of the IEEE Int. Conf. on Electronic Packaging Technology (ICEPT-2014), China, pp 1283–1286

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Banerjee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Das Mazumdar, S., Chatterjee, S. et al. Half mode semi-hexagonal SIW antennas and arrays for cellular V2X communication. Microsyst Technol 27, 3639–3651 (2021). https://doi.org/10.1007/s00542-020-05127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05127-7

Navigation