Skip to main content
Log in

Microstructure and Tensile Properties of a Cast Eutectic Al–Si–Cu Alloy Modified by Zr and V

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Minor Zr and V were added individually and jointly to Al–12.5Si–1Cu alloy to develop heat-resistant aluminum alloys. The as-cast microstructure, room temperature, and high temperature (350 °C) tensile properties and the strengthening mechanism of the modified alloys were investigated. The results show that the rod-like (Al, Si)3Zr and hexagonal (Si, Al)2V precipitates are respectively found in the alloys with individually added Zr or V. At the same time, they were transformed into (Al, Si)3(Zr, V) and (Si, Al)2(V, Zr) when Zr and V were added together. Individually added Zr or V could change the eutectic silicon aspect ratio, but the largest effect was recorded for the combined addition 0.3 wt% Zr + 0.4 wt% V. The addition of Zr and V had no significant impact on the room temperature tensile strength of the alloys but improved the yield strength. Individual additions of Zr and V caused negligible improvements in high-temperature tensile strength of alloys tested. In contrast, the combined Zr + V additions resulted in the substantial improvement with tensile strength at 350 °C reaching 79.4 MPa, i.e. 89% higher than the base alloy. The analysis shows that the increase of eutectic silicon aspect ratio and the solution strengthening of trace V in eutectic silicon is the leading cause of improving high-temperature tensile strength. The brittle, blocky primary silicon, coarse rod-like (Al, Si)3(Zr, V), and hexagonal (Si, Al)2(V, Zr) precipitates are detrimental to high-temperature properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.R. Farkoosh, X. Grant-Chen, M. Pekguleryuz, Mater. Sci. Eng. A 620, 181–189 (2015)

    Article  Google Scholar 

  2. J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra, F.H. Samuel, Mater. Design 58, 89–101 (2014)

    Article  CAS  Google Scholar 

  3. M. Zamani, L. Morini, L. Ceschini, S. Seifeddine, Mater. Sci. Eng. A 693, 42–50 (2017)

    Article  CAS  Google Scholar 

  4. S.-W. Choi, H.-S. Cho, S. Kumai, Mater. Sci. Eng. A 678, 267–272 (2016)

    Article  CAS  Google Scholar 

  5. S.V. Senkova, O.N. Senkov, D.B. Miracle, Metall. Mater. Trans. A 37, 3569–3575 (2006)

    Article  Google Scholar 

  6. S.K. Shaha, F. Czerwinski, W. Kasprzak, D.L. Chen, Mater. Design 59, 352–358 (2014)

    Article  CAS  Google Scholar 

  7. W. Kasprzak, B.S. Amirkhiz, M. Niewczas, J. Alloy. Compd. 595, 67–79 (2014)

    Article  CAS  Google Scholar 

  8. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Metall. Mater. Trans. A 46, 3063–3078 (2015)

    Article  CAS  Google Scholar 

  9. Y. Fan, M.M. Makhlouf, Mater. Sci. Eng. A 654, 228–235 (2016)

    Article  CAS  Google Scholar 

  10. L. Zuo, B. Ye, J. Feng, X. Xu, X. Kong, H. Jiang, J. Alloy. Compd. 791, 1015–1024 (2019)

    Article  CAS  Google Scholar 

  11. J. Feng, B. Ye, L. Zuo, R. Qi, Q. Wang, H. Jiang, R. Huang, W. Ding, Mater. Sci. Eng. A 706, 27–37 (2017)

    Article  CAS  Google Scholar 

  12. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Mater. Sci. Eng. A 652, 353–364 (2016)

    Article  CAS  Google Scholar 

  13. G. Li, H. Liao, X. Suo, Y. Tang, U.S. Dixit, P. Petrov, Mater. Sci. Eng. A 709, 90–96 (2018)

    Article  CAS  Google Scholar 

  14. L. Alyaldin, E.M. Elgallad, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Mater. Sci. Eng. A 708, 77–90 (2017)

    Article  CAS  Google Scholar 

  15. M. Colombo, E. Gariboldi, A. Morri, Mater. Sci. Eng. A 713, 151–160 (2018)

    Article  CAS  Google Scholar 

  16. M. Rahimian, S. Amirkhanlou, P. Blake, S. Ji, Mater. Sci. Eng. A 721, 328–338 (2018)

    Article  CAS  Google Scholar 

  17. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Metall. Mater. Trans. A 47, 2396–2409 (2016)

    Article  CAS  Google Scholar 

  18. Y. Wu, H. Liao, K. Zhou, J. Yang, Mater. Design 57, 416–420 (2014)

    Article  CAS  Google Scholar 

  19. M.H. Abdelaziz, A.M. Samuel, H.W. Doty, F.H. Samuel, J. Mater. Res. Technol. 9, 5962–5981 (2020)

    Article  CAS  Google Scholar 

  20. T. Gao, X. Zhu, Q. Sun, X. Liu, J. Alloy. Compd. 567, 82–88 (2013)

    Article  CAS  Google Scholar 

  21. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Mater. Sci. Eng. A 684, 726–736 (2017)

    Article  CAS  Google Scholar 

  22. Y. Yang, S.-Y. Zhong, Z. Chen, M. Wang, N. Ma, H. Wang, J. Alloy. Compd. 647, 63–69 (2015)

    Article  CAS  Google Scholar 

  23. K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallk. 97, 246–265 (2006)

    Article  CAS  Google Scholar 

  24. K.-S. Kim, S.-Y. Sung, B.-S. Han, C.-Y. Jung, K.-A. Lee, Met. Mater. Int. 20, 243–248 (2014)

    Article  Google Scholar 

  25. T. Gao, A. Ceguerra, A. Breen, X. Liu, Y. Wu, S. Ringer, J. Alloy. Compd. 674, 125–130 (2016)

    Article  CAS  Google Scholar 

  26. K.E. Knipling, D.C. Dunand, D.N. Seidman, Acta Mater. 56, 114–127 (2008)

    Article  CAS  Google Scholar 

  27. Y. Meng, J. Cui, Z. Zhao, Y. Zuo, Metall. Mater. Trans. A 45, 3741–3747 (2014)

    Article  CAS  Google Scholar 

  28. L. Pan, S. Zhang, Y. Yang, N. Gupta, C. Yang, Y. Zhao, Z. Hu, Metall. Mater. Trans. A 51, 214–225 (2020)

    Article  CAS  Google Scholar 

  29. J. Rakhmonov, G. Timelli, F. Bonollo, Mater. Charact. 128, 100–108 (2017)

    Article  CAS  Google Scholar 

  30. M.-S. Jo, Y.-H. Cho, J.-M. Lee, S.-H. Kim, J.-Y. Kang, J.-G. Jung, S.-B. Kim, J.-I. Jang, Intermetallics 117, 106667 (2020)

    Article  CAS  Google Scholar 

  31. B. Huber, H.S. Effenberger, K.W. Richter, Intermetallics 18, 606–615 (2010)

    Article  CAS  Google Scholar 

  32. J. Murray, A. Peruzzi, J.P. Abriata, J. Phase Equilib. Diff. 13, 277–291 (1992)

    Article  CAS  Google Scholar 

  33. J.L. Murray, A.J. McAlister, Bull. Alloy Phase Diagrams 5, 74 (1984)

    Article  CAS  Google Scholar 

  34. S. Farahany, A.K. Dahle, A. Ourdjini, A. Hekmat-Ardakan, J. Alloy. Compd. 656, 944–956 (2016)

    Article  CAS  Google Scholar 

  35. L. Li, D. Li, F. Mao, J. Feng, Y. Zhang, Y. Kang, J. Alloy. Compd. 826, 154206 (2020)

    Article  CAS  Google Scholar 

  36. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.-X. Zhang, Acta Mater. 61, 360–370 (2013)

    Article  CAS  Google Scholar 

  37. P. Pandey, S.K. Makineni, B. Gault, K. Chattopadhyay, Acta Mater. 170, 205–217 (2019)

    Article  CAS  Google Scholar 

  38. T. Gao, D. Li, Z. Wei, X. Liu, Mater. Sci. Eng. A 552, 523–529 (2012)

    Article  CAS  Google Scholar 

  39. J. Rakhmonov, G. Timelli, A. Fabrizi, F. Bonollo, Int. J. Mater. Res. 109, 1099–1112 (2018)

    Article  CAS  Google Scholar 

  40. Z. Gesheng, Composite, ed. by F. Xiaoming, Z. Chongcai (Chongqing University Press, Chongqing, 2007), pp. 29–34

  41. Y. Wang, H. Liao, Y. Wu, J. Yang, Mater. Design 53, 634–638 (2014)

    Article  CAS  Google Scholar 

  42. M.G. Mueller, G. Žagar, A. Mortensen, Acta Mater. 143, 67–76 (2018)

    Article  CAS  Google Scholar 

  43. M. GmbH, Pistons and Engine Testing, 2nd edn. (Springer, Stuttgart, 2016), pp. 25–36

    Book  Google Scholar 

  44. J.-Y. Zhang, L.-J. Zuo, J. Feng, B. Ye, X.-Y. Kong, H.-Y. Jiang, W.-J. Ding, T. Nonferr. Metal. Soc. 30, 1717–1730 (2020)

    Article  CAS  Google Scholar 

  45. F. Czerwinski, Materials 13, 3441 (2020)

  46. K. Hu, Q. Xu, X. Ma, Q. Sun, T. Gao, X. Liu, J. Mater. Sci. Technol. 35, 306–312 (2019)

    Article  Google Scholar 

  47. S. Chankitmunkong, D.G. Eskin, U. Patakham, C. Limmaneevichitr, J. Alloy. Compd. 782, 865–874 (2019)

    Article  CAS  Google Scholar 

  48. L. Tian, Y. Guo, J. Li, J. Wang, H. Duan, F. Xia, M. Liang, Mater. Sci. Eng. A 738, 375–379 (2018)

    Article  CAS  Google Scholar 

  49. Y. Yang, K. Yu, Y. Li, D. Zhao, X. Liu, Mater. Design 33, 220–225 (2012)

    Article  CAS  Google Scholar 

  50. E.R. Wang, X.D. Hui, G.L. Chen, Mater. Design 32, 4333–4340 (2011)

    Article  CAS  Google Scholar 

  51. Y. Li, Y. Yang, Y. Wu, L. Wang, X. Liu, Mater. Sci. Eng. A 527, 7132–7137 (2010)

    Article  Google Scholar 

  52. Z. Qian, X. Liu, D. Zhao, G. Zhang, Mater. Lett. 62, 2146–2149 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Guangxi Natural Science Foundation (Grant No. 2016GXNSFAA380223), Youth Fund of Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (GXYSYF1806), Nanning Scientific Research and Technology Development Program (20171005-1), Guangxi University Research Fund Project (Grant No. XJZ100343), Innovation Drive Development Foundation of Guangxi (Grant No. AA17202011), Innovation and Entrepreneurship Training Program for College Students of Guangxi University (201810593230). Jieming Wen is thanked for providing the electronic universal testing machine for high-temperature tensile test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zeng, G., Rao, D. et al. Microstructure and Tensile Properties of a Cast Eutectic Al–Si–Cu Alloy Modified by Zr and V. Met. Mater. Int. 27, 5436–5449 (2021). https://doi.org/10.1007/s12540-020-00909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00909-0

Keywords

Navigation