Skip to main content
Log in

Effect of Pulse Frequency on the Columnar-to-Equiaxed Transition and Microstructure Formation in Quasi-Continuous-Wave Laser Powder Deposition of Single-Crystal Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The columnar-to-equiaxed transition (CET) plays a vital role in keeping the monocrystalline nature in the repaired single-crystal superalloy by the laser powder deposition process. In this study, the effect of pulse frequency on the CET and microstructure formation in a novel quasi-continuous-wave laser powder deposition process of single-crystal superalloy was studied through an improved three-dimensional mathematical model and corresponding experiments. Results showed that the pulse frequency has a predominant effect on the CET conditions and associated microstructure formation in the deposited bead. In each pulse cycle, the CET position at the solidification interface moves upward synchronously with the contraction of the molten pool, tending to induce the epitaxial growth of columnar dendrites with a tapered distribution. The overlaps of adjacent pulsed molten pools contribute to the undulated distribution of columnar dendrites in the deposited bead. The increase of pulse frequency weakens the oblique fluctuation of CET positions and resultantly narrows the undulated distribution of epitaxial columnar dendrites. Under the given conditions, the height ratio of epitaxial columnar dendrites obtains a minimum value of 71 pct with pulse frequency = 50 Hz and has a minimum value of 50 pct with pulse frequency = 0 Hz (continuous-wave mode), indicating that the quasi-continuous-wave laser mode can effectively enhance the epitaxial growth ability of columnar dendrites with the optimized pulse frequency. The quasi-continuous-wave laser powder deposition process exhibits an attractive capability to balance deposition efficiency and epitaxial growth continuity in the deposited beads. Our results provide a potential method to tailor the CET conditions and optimize the laser repair processing window for the single-crystal superalloy via adjusting the pulse frequency of the quasi-continuous-wave laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] F.I. Versnyder, M. Shank, Mater. Sci. Eng., 1970, vol. 6, pp. 213-47.

    Article  CAS  Google Scholar 

  2. [2] M.C. Flemings, Metall. Trans., 1974, vol. 5, pp. 2121-34.

    Article  CAS  Google Scholar 

  3. [3] T.M. Pollock, S. Tin, J. propul. power, 2006, vol. 22, pp. 361-74.

    Article  CAS  Google Scholar 

  4. [4] T. Pollock, W. Murphy, Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1081-94.

    Article  Google Scholar 

  5. [5] S. Babu, S. David, J. Park, J. Vitek, Sci. Technol. Weld. Join., 2004, vol. 9, pp. 1-12.

    Article  CAS  Google Scholar 

  6. [6] R. Vilar, A. Almeida, Laser Appl., 2015, vol. 27, p. S17004.

    Article  Google Scholar 

  7. [7] B. Rottwinkel, A. Pereira, I. Alfred, C. Noelke, V. Wesling, S. Kaierle, Laser Appl., 2017, vol. 29, p. 022310.

    Article  Google Scholar 

  8. [8] R. Vilar, E. Santos, P. Ferreira, N. Franco, R. Da Silva, Acta Mater., 2009, vol. 57, pp. 5292-5302.

    Article  CAS  Google Scholar 

  9. [9] M.B. Henderson, D. Arrell, R. Larsson, M. Heobel, G. Marchant, Sci. Technol. Weld. Join., 2004, vol. 9, pp. 13-21.

    Article  CAS  Google Scholar 

  10. [10] S. Kaierle, L. Overmeyer, I. Alfred, B. Rottwinkel, J. Hermsdorf, V. Wesling, N. Weidlich, CIRP J. Manu. Sci. Tec., 2017, vol. 19, pp. 196-99.

    Article  Google Scholar 

  11. [11] T. Anderson, J. DuPont, T. DebRoy, Acta Mater., 2010, vol. 58, pp. 1441-54.

    Article  CAS  Google Scholar 

  12. [12] J. Vitek, S. David, L. Boatner, Sci. Technol. Weld. Join., 1997, vol. 2, pp. 109-18.

    Article  CAS  Google Scholar 

  13. [13] S. David, J. Vitek, S. Babu, L. Boatner, R. Reed, Sci. Technol. Weld. Join., 1997, vol. 2, pp. 79-88.

    Article  CAS  Google Scholar 

  14. [14] Z. Liu, H. Qi, Acta Mater., 2015, vol. 87, pp. 248-58.

    Article  CAS  Google Scholar 

  15. [15] Z. Liu, H. Qi, Physics Procedia 2014, vol. 56, pp. 411-20.

    Article  CAS  Google Scholar 

  16. [16] M. Rappaz, S. David, J. Vitek, L. Boatner, Metall. Trans. A, 1990, vol. 21, pp. 1767-82.

    Article  Google Scholar 

  17. [17] M. Rappaz, S. David, J. Vitek, L. Boatner, Metall. Trans. A, 1989, vol. 20, pp. 1125-38.

    Article  Google Scholar 

  18. M. Gäumann, S. Henry, F. Cleton, J.D. Wagniere, W. Kurz, Mater. Sci. Eng., A, 1999, vol. 271, pp. 232–41.

  19. [19] J. Hunt, Mater. Sci. Eng., 1984, vol. 65, pp. 75-83.

    Article  CAS  Google Scholar 

  20. [20] S. Yang, W. Huang, W. Liu, M. Zhong, Y. Zhou, Acta Mater., 2002, vol. 50, pp. 315-25.

    Article  CAS  Google Scholar 

  21. [21] M. Gäumann, C. Bezencon, P. Canalis, W. Kurz, Acta Mater., 2001, vol. 49, pp. 1051-62.

    Article  Google Scholar 

  22. [22] W. Liu, J. DuPont, Acta Mater., 2004, vol. 52, pp. 4833-47.

    CAS  Google Scholar 

  23. [23] Y.J. Liang, X. Cheng, J. Li, H.M. Wang, Mater. Des., 2017, vol. 130, pp. 197-207.

    Article  CAS  Google Scholar 

  24. [24] L. Wang, N. Wang, W. Yao, Y. Zheng, Acta Mater., 2015, vol. 88, pp. 283-92.

    Article  CAS  Google Scholar 

  25. [25] H. Chen, G. Huang, Y. Lu, S. Lin, D. Liu, Mater. Charact., 2019, vol. 158, p. 109982.

    Article  CAS  Google Scholar 

  26. [26] Y. Wang, J. Choi, J. Mazumder, Metall. Mater. Trans. A, 2016, vol. 47, pp. 5685-90.

    Article  CAS  Google Scholar 

  27. [27] Z. Liu, H. Qi, L. Jiang, J. Mater. Process. Technol., 2016, vol. 230, pp. 177-86.

    Article  CAS  Google Scholar 

  28. [28] H. Xiao, S.M. Li, W.J. Xiao, Y.Q. Li, L.M. Cha, J. Mazumder, L.J. Song, Mater. Lett., 2017, vol. 188, pp. 260-62.

    Article  CAS  Google Scholar 

  29. [29] S. Li, H. Xiao, K. Liu, W. Xiao, Y. Li, X. Han, J. Mazumder, L. Song, Mater. Des., 2017, vol. 119, pp. 351-60.

    Article  CAS  Google Scholar 

  30. [30] Z. Liu, H. Qi, J. Mater. Process. Technol., 2015, vol. 216, pp. 19-27.

    Article  CAS  Google Scholar 

  31. [31] Z. Liu, H. Qi, Metall. Mater. Trans. A, 2014, vol. 45, pp. 1903-15.

    Article  CAS  Google Scholar 

  32. [32] Z. Liu, L. Jiang, Z. Wang, L. Song, Metall. Mater. Trans. A, 2018, vol. 49, pp. 6533-6543.

    Article  CAS  Google Scholar 

  33. [33] J. Vitek, Acta Mater., 2005, vol. 53, pp. 53-67.

    Article  CAS  Google Scholar 

  34. [34] W. Liu, J. DuPont, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3397-3406.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51905253 and 91860131), the Natural Science Foundation of Guangdong Province of China (Grant No. 2018A030310132) and the Natural Science Foundation of Shenzhen of China (Grant No. JCYJ20190809152401680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 15, 2020; accepted November 1, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhu, Q. Effect of Pulse Frequency on the Columnar-to-Equiaxed Transition and Microstructure Formation in Quasi-Continuous-Wave Laser Powder Deposition of Single-Crystal Superalloy. Metall Mater Trans A 52, 776–788 (2021). https://doi.org/10.1007/s11661-020-06097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06097-1

Navigation