Skip to main content
Log in

The Role of HAZ Softening on Cross-Tension Mechanical Performance of Martensitic Advanced High Strength Steel Resistance Spot Welds

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Giga-grade martensitic advanced high-strength steels are prone to sub-critical heat-affected zone (SCHAZ) softening during resistance spot welding. The article aims at understanding the role of HAZ softening on the fracture mode, load-bearing capacity, and energy absorption capability of MS1400 resistance spot welds during the cross-tension test. The highest load-bearing capacity was obtained when pullout failure was initiated from the martensitic coarse-grained HAZ. However, more severe HAZ softening and formation of a wider softened zone, promoted at high heat input conditions, encourages strain localization in SCHAZ, promoting transition in failure location to sub-critical HAZ. This change in pullout failure location is responsible for the observed reduction in the weld peak load at high welding currents. Therefore, control of martensite tempering in the HAZ is critical to obtain strong and reliable resistance spot welds in martensitic advanced high-strength steel sheets. To preclude the detrimental effect of the martensite tempering on the weld strength, the minimum welding current, which enables pullout failure mode, should be used for resistance spot welding of MS1400 advanced martensitic steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. [1] C. Lesch, N. Kwiaton, and F. B. Klose: Steel Res. Int., 2017, 88, pp. 1-21.

    Article  Google Scholar 

  2. [2] H. Safari, H. Nahvi, and M. Esfahanian: Int. J. Crashworthiness, 2018, vol. 23, pp. 645–659.

    Article  Google Scholar 

  3. [3] B. K. Zuidema: JOM, 2012, vol. 64, pp. 1039–1047.

    Article  Google Scholar 

  4. [4] C. M. Tamarelli: Steel Mark. Dev. Institute, Michigan, 2011, pp. 1-42.

    Google Scholar 

  5. [5] M. Pouranvari and S. P. H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361–403.

    Article  CAS  Google Scholar 

  6. [6] N.D. Raath, D. Norman, I. Mcgregor, S. Hepple, R. Dashwood and D.J. Hughes: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1536–51.

    Article  Google Scholar 

  7. [7] M. Sheikhi, M. ValaeeTale, GH.R. Usefifar and A. Fattah-Alhosseini: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5415–23.

    Article  Google Scholar 

  8. [8] H. Rezayat, H. Ghassemi-Armaki, S. Sriram, and S. S. Babu: Metall. Mater. Trans. A, 2020, vol. 51, pp. 2209–21.

    Article  Google Scholar 

  9. [9] M. Bemani and M. Pouranvari: Mater. Sci. Eng. A, 2020, vol. 773, pp. 1-9.

    Article  Google Scholar 

  10. [10] G. Park, K. Kim, S. Uhm, and C. Lee: Mater. Sci. Eng. A, 2019, vol. 766, pp. 1-11.

    Article  Google Scholar 

  11. [11] S.S. Beni, M. Atapour, M.R. Salmani, and R. Ashiri: Metall. Mater. Trans. A, 2019, vol. 50, pp. 2218-34.

    Article  Google Scholar 

  12. [12] Z. Ling, T. Chen, L. Kong, M. Wang, H. Pan, and M. Lei, 2019: Metall. Mater. Trans. A, vol. 50, pp.5128-42.

    Article  CAS  Google Scholar 

  13. Kalashami AG, DiGiovanni C, Razmpoosh MH, Goodwin F, Zhou NY: Metall. Mater. Trans. A, 2020, 51, 2180–91.

    Article  Google Scholar 

  14. [14] J. E. Gould, S. P. Khurana, and T. Li: Weld. J, 2006, vol. 85, pp. 111-116.

    Google Scholar 

  15. [15] G. Park, K. Kim, S. Uhm, and C. Lee: Mater. Sci. Eng. A, 2019, vol. 752, pp. 206–216.

    Article  CAS  Google Scholar 

  16. [16] M. Pouranvari and S. P. H. Marashi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8337–43.

    Article  CAS  Google Scholar 

  17. [17] H. Aghajani, and M. Pouranvari: Metall. Mater. Trans. A, 2019, vol. 50, pp. 5191-5209.

    Article  Google Scholar 

  18. [18] D. C. Saha, E. Biro, A. P. Gerlich, and Y. Zhou: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3772–77.

    Article  Google Scholar 

  19. [19] S. Vignier, E. Biro, and M. Hervé: Weld. World, 2014, vol. 58, pp. 297–305.

    Article  Google Scholar 

  20. [20] V. H. B. Hernandez, S. K. Panda, Y. Okita, and N. Y. Zhou: J. Mater. Sci., 2010, vol. 45, pp. 1638-47.

    Article  Google Scholar 

  21. [21] V. H. B. Hernandez, S. S. Nayak, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3115-29.

    Article  Google Scholar 

  22. [22] D. S. Safanama, S. P. H. Marashi, and M. Pouranvari: Sci. Technol. Weld. Join., 2012, vol. 17, pp. 288–294.

    Article  CAS  Google Scholar 

  23. [23] M. Pouranvari, S. Sobhani, and F. Goodarzi: J. Manuf. Process., 2018, vol. 31, pp. 867–874.

    Article  Google Scholar 

  24. [24] E. Biro, J. R. McDermid, J. D. Embury, and Y. Zhou: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2348-56.

    Article  CAS  Google Scholar 

  25. [25] S. S. Nayak, V. H. B. Hernandez, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3242-48.

    Article  Google Scholar 

  26. [26] M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 520–526.

    Article  CAS  Google Scholar 

  27. [27] M. Pouranvari: Mater. Sci. Eng. A, 2017, vol. 680, pp. 97–107.

    Article  CAS  Google Scholar 

  28. [28] V. H. B. Hernandez, M. L. Kuntz, M. I. Khan, and Y. Zhou: Weld. Join., 2008, Vol. 13, pp. 769-776.

    Article  Google Scholar 

  29. [29] M. Tamizi, M. Pouranvari, and M. Movahedi: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 327-335.

    Article  CAS  Google Scholar 

  30. [30] S. Zuniga and S. D. Sheppard: ASTM International, 1997, Vol. 27, pp. 469-489.

    Google Scholar 

  31. [31] Y. J. Chao, J. Eng: Mater. Technol., 2003, vol. 125, pp. 125-132.

    Article  Google Scholar 

  32. [32] D. J. Radakovic and M. Tumuluru: Weld. J., 2012, vol. 91, pp. 8-15.

    Google Scholar 

  33. [33] A. Chabok, E. van der Aa and Y. T. Pei: Mater. Sci. Eng. A, 2020, vol. 788, pp. 1-13.

    Article  Google Scholar 

  34. [34] M. Tumuluru, Weld. J, 2010, vol. 89, pp. 91-100.

    Google Scholar 

  35. P. Eftekharimilani, E. M. Van der Aa, R. Petrov, M. J. M. Hermans, I. M. Richardson: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6185-6196.

    Article  Google Scholar 

  36. American National Standard Institute, American Welding Society, AWS D8.9M, 2012, pp. 43–45.

  37. [37] Y. J. Chao: Sci. Technol. Weld. Join., 2008, vol. 8, pp. 133–137.

    Google Scholar 

  38. [38] S. Dancette, D. Fabrègue, V. Massardier, J. Merlin, T. Dupuy, and M. Bouzekri: Eng. Fract. Mech., 2011, vol. 78, pp. 2259-2272.

    Article  Google Scholar 

Download references

Acknowledgments

The authors offer their special thanks to SSAB Company, Swedish-Finnish Company, for supplying martensitic advanced high strength steel (Docal M1400) for this scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pouranvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 6, 2020; accepted November 5, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamizi, M., Pouranvari, M. & Movahedi, M. The Role of HAZ Softening on Cross-Tension Mechanical Performance of Martensitic Advanced High Strength Steel Resistance Spot Welds. Metall Mater Trans A 52, 655–667 (2021). https://doi.org/10.1007/s11661-020-06104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06104-5

Navigation