Skip to main content
Log in

The Anomalous Nucleation in Al-Tb Metallic Glasses

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 12 October 2021

This article has been updated

Abstract

The effects of amorphous structure on the devitrification of Al90Tb10 marginal glass former system were investigated in detail by a combined study of high-energy X-ray diffraction (HEXRD), X-ray absorption fine structure (EXAFS), reverse Monte Carlo simulations (RMC), transmission electron microscopy (TEM) and thermal analyses. The atomic structures of melt-spun ribbons and magnetron sputtered amorphous samples with the same composition were simulated using RMC constrained by XRD, EXAFS, and ab-initio results. The fcc-Al nanocrystals nucleated and grown in thin-film specimens have a limited size with almost perfect spherical morphology. The population of these nanocrystals is three orders of magnitude higher as compared to ribbon specimens. The differences in the devitrified ribbon and thin-film metallic glasses were traced back to structural differences in the amorphous state. The amorphous melt-spun ribbons and magnetron sputtered thin- films were found to have different degrees of short-range order and clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. I. Lobzenko, Y. Shiihara, T. Iwashita, and T. Egami: Phys. Rev. Lett., 2020, vol. 124, p. 085503.

    Article  CAS  Google Scholar 

  2. H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, and E. Ma: Nat. Mater., 2007, vol. 6, pp. 735–9.

    Article  CAS  Google Scholar 

  3. Y.Q. Cheng and E. Ma: Prog. Mater. Sci., 2011, vol. 56, pp. 379–473.

    Article  CAS  Google Scholar 

  4. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085–9.

    Article  CAS  Google Scholar 

  5. A. Inoue and A. Takeuchi: Acta Mater., 2011, vol. 59, pp. 2243–67.

    Article  CAS  Google Scholar 

  6. 6. W.H. Wang (2012) Prog. Mater. Sci. 57:487-656

    Article  CAS  Google Scholar 

  7. 7. J. Ding, E. Ma (2017) npj Comput. Mater. 3:1-12.

    CAS  Google Scholar 

  8. Y.Q. Cheng, E. Ma, and H.W. Sheng: Phys. Rev. Lett., 2009, vol. 102, p. 245501.

    Article  CAS  Google Scholar 

  9. Y. He, S.J. Poon, and G.J. Shiflet: Science, 1988, vol. 241, pp. 1640–2.

    Article  CAS  Google Scholar 

  10. H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, and K. Samwer: Nat. Mater., 2011, vol. 10, pp. 439–42.

    Article  CAS  Google Scholar 

  11. 11. C.A. Schuh, A.C. Lund (2003) Nat. Mater. 2:449-52

    Article  CAS  Google Scholar 

  12. D. Nagahama, T. Ohkubo, T. Mukai, and K. Hono: Mater. Trans., 2005, vol. 46, pp. 1264–70.

    Article  CAS  Google Scholar 

  13. R.B. Dandliker, R.D. Conner, and W.L. Johnson: J. Mater. Res., 1998, vol. 13, pp. 2896–2901.

    Article  CAS  Google Scholar 

  14. Y. He, G.J. Shiflet, and S.J. Poon: Acta Metall. Mater., 1995, vol. 43, pp. 83–91.

    Article  CAS  Google Scholar 

  15. C. Fan and A. Inoue: Appl. Phys. Lett., 2000, vol. 77, pp. 46–8.

    Article  CAS  Google Scholar 

  16. Y.E. Kalay, I. Kalay, J. Hwang, P.M. Voyles, and M.J. Kramer: Acta Mater., 2012, vol. 60, pp. 994-1003.

    Article  CAS  Google Scholar 

  17. T. Demirtaş and Y.E. Kalay: J. Non. Cryst. Solids, 2013, vol. 378, pp. 71-8.

    Article  CAS  Google Scholar 

  18. 18. J.H. Perepezko, R.J. Hebert, R.I. Wu, G. Wilde (2003) J. Non-Crystalline Solids 317:52-61

    Article  CAS  Google Scholar 

  19. D.R. Allen, J.C. Foley, and J.H. Perepezko: Acta Mater., 1998, vol. 46, pp. 431-40.

    Article  CAS  Google Scholar 

  20. 20. A. Inoue (1998) Prog. Mater. Sci. 43:365-520

    Article  CAS  Google Scholar 

  21. W.G. Stratton, J. Hamann, J.H. Perepezko, P.M. Voyles, X. Mao, and S. V. Khare: Appl. Phys. Lett., 2005, vol. 86, pp. 141910.

    Article  CAS  Google Scholar 

  22. G. Wilde, H. Sieber, and J.H. Perepezko: Scr. Mater., 1999, vol. 7, pp.779-83.

    Article  Google Scholar 

  23. A.K. Gangopadhyay, T.K. Croat, and K.F. Kelton: Acta Mater., 2000, vol. 48, pp. 4035-43.

    Article  CAS  Google Scholar 

  24. 24. T.K. Croat, A.K. Gangopadhyay, K.F. Kelton (2002) Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 82:2483-97

    CAS  Google Scholar 

  25. K.K. Sahu, N.A. Mauro, L. Longstreth-Spoor, D. Saha, Z. Nussinov, M.K. Miller, and K.F. Kelton: Acta Mater., 2010, vol. 58, pp. 4199-4206.

    Article  CAS  Google Scholar 

  26. K. Hono, D.H. Ping, M. Ohnuma, and H. Onodera: Acta Mater., 1999, vol. 47, pp. 997–1006.

    Article  CAS  Google Scholar 

  27. K. Kajiwara, M. Ohnuma, T. Ohkubo, D.H. Ping, and K. Hono: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 738–43.

    Article  CAS  Google Scholar 

  28. M. Ovun, M.J. Kramer, and Y.E. Kalay: J. Non. Cryst. Solids, 2014, vol. 405,pp. 27-32.

    Article  CAS  Google Scholar 

  29. C. Yildirim, M. Kutsal, R.T. Ott, M.F. Besser, M.J. Kramer, and Y.E. Kalay: Mater. Des., 2016, vol. 112, pp. 479–84.

    Article  CAS  Google Scholar 

  30. Q. An, W.L. Johnson, K. Samwer, S.L. Corona, and W.A. Goddard: J. Phys. Chem. Lett., 2020, vol. 11, pp. 632–45.

    Article  CAS  Google Scholar 

  31. Q. An, W.L. Johnson, K. Samwer, S.L. Corona, and W.A. Goddard: Acta Mater., 2020, vol. 195, pp. 274–81.

    Article  CAS  Google Scholar 

  32. S.H. Zhou, F.Q. Meng, M.J. Kramer, R.T. Ott, F. Zhang, Z. Ye, S. Jain, and R.E. Napolitano: Mater. Today Commun., 2019, vol. 21, p. 100673.

    Article  CAS  Google Scholar 

  33. 33. H. Zhang, J. Geng, R.T. Ott, M.F. Besser, M.J. Kramer (2015) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46:4078–85

    Article  CAS  Google Scholar 

  34. P. Juhás, T. Davis, C.L. Farrow, and S.J.L. Billinge: J. Appl. Crystallogr., 2013, vol.46, pp.560-6.

    Article  CAS  Google Scholar 

  35. 35. B. Ravel, M. Newville (2005) J. Synchrot. Radiat. 12:537-41.

    Article  CAS  Google Scholar 

  36. A. Savitzky and M.J.E. Golay: Anal. Chem., 1964, vol. 36, pp. 1627-39.

    Article  CAS  Google Scholar 

  37. S. Calvin: XAFS for Everyone, 1st ed.,CRC Press, New York, NY, 2018, pp. 86.

    Google Scholar 

  38. 38. O. Gereben, P. Jóvári, L. Temleitner, L. Pusztai (2007) J. Optoelectr. Adv. Mater. 9:3021-27

    CAS  Google Scholar 

  39. C.H. Rycroft: Chaos, 2009,vol. 19, pp 041111.

    Article  Google Scholar 

  40. 40. G. Voronoi (1908) J. Reine Angew. Math. 134:198-287

    Article  Google Scholar 

  41. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702-706.

    Article  CAS  Google Scholar 

  42. T. Ozawa: Bull. Chem. Soc. Jpn., 1965, vol. 38, pp. 1881–86.

    Article  CAS  Google Scholar 

  43. H.Y. Hsieh, T. Egami, Y. He, S.J. Poon, and G.J. Shiflet: J. Non. Cryst. Solids, 1991, vol. 135, pp. 248-54.

    Article  CAS  Google Scholar 

  44. Y.E. Kalay, L.S. Chumbley, M.J. Kramer, and I.E. Anderson: Intermetallics, 2010, vol. 18, pp. 1676–82.

    Article  CAS  Google Scholar 

  45. W.K. Luo and E. Ma: J. Non. Cryst. Solids, 2008, vol. 354, pp.945-55.

    Article  CAS  Google Scholar 

  46. M.I. Mendelev and M.J. Kramer: J. Appl. Phys., 2010, vol. 107, pp. 073505 .

    Article  CAS  Google Scholar 

  47. T.Q. Wen, Y. Zhang, C.Z. Wang, N. Wang, K.M. Ho, and M.J. Kramer: Intermetallics, 2018, vol. 98, pp. 131–38.

    Article  CAS  Google Scholar 

  48. J.J. Rehr, J.J. Kas, F.D. Vila, M.P. Prange, and K. Jorissen: Phys. Chem. Chem. Phys., 2010, vol. 12, pp. 5503-13.

    Article  CAS  Google Scholar 

  49. R.. Gumeniuk, B.. Stel’ makhovych, and Y. Kuz’ ma: J. Alloys Compd., 2001, vol. 321, pp. 132-37.

  50. W. Zalewski, J. Antonowicz, R. Bacewicz, and J. Latuch: J. Alloys Compd., 2009, vol. 468, pp. 40–46.

    Article  CAS  Google Scholar 

  51. R. Bacewicz and J. Antonowicz: Scr. Mater., 2006, vol. 54, pp. 1187–91.

    Article  CAS  Google Scholar 

  52. P. Malet, M.J. Capitan, M.A. Centeno, J.A. Odriozola, and I. Carrizosa: J. Chem. Soc. Faraday Trans., 1994, vol. 90, pp. 2783–90.

    Article  CAS  Google Scholar 

  53. R. Anderson, T. Brennan, G. Mountjoy, R.J. Newport, and G.A. Saunders: J. Non. Cryst. Solids, 1998, vol. 232–234, pp. 286–92.

    Article  Google Scholar 

  54. 54. D. Bowron, G. Saunders, R. Newport, B. Rainford, H. Senin (1996) Phys. Rev. B - Condens. Matter Mater. Phys. 53:5268–75

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work at METU was supported by the United States Air Force Office of Scientific Research (AFOSR) under the Grant Number: FA9550-17-1-0216. The high-energy X-ray experiments were performed at the MSPD and CLAESS beamlines of ALBA and financially supported by the Turkish Atomic Energy Authority (TAEK). The authors would like to thank Prof. M. J. Kramer and the Materials Preparation Center of the Ames Laboratory for supplying the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. E. Kalay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on June 17, 2020; accepted November 17, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulucan, T.H., Kalay, I. & Kalay, Y.E. The Anomalous Nucleation in Al-Tb Metallic Glasses. Metall Mater Trans A 52, 700–710 (2021). https://doi.org/10.1007/s11661-020-06111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06111-6

Navigation