Skip to main content

Advertisement

Log in

Yttria-Reinforced Fe-Cr Ferritic Alloy-Based Nanocomposites for Fusion Reactor Structural Applications

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ferritic steel with oxide dispersion strengthening is a promising material for fusion and fission reactor components. In the present study, the influence of Mo, V, and Zr on microstructural evolution, thermal stability, and mechanical properties of yttria-dispersed ferritic Fe-14Cr-1Ti-0.25Y2O3-0.3 wt pct X (X = Mo/V/Zr) steels was investigated. This work is inspired by the concept of MA957 alloy, where Mo was replaced by V/Zr to develop new alloy compositions with possible improvement of thermal stability and mechanical properties through grain refinement and oxide dispersion strengthening. These steels were developed by mechanical alloying (MA) and subsequently consolidated by spark plasma sintering (SPS) at different temperatures (900 °C, 1000 °C, and 1050 °C) in high-purity argon atmosphere. The relative sintered density was found to be ~ 97 to 98 pct for specimens spark plasma sintered (SPSed) at 1050 °C. Microstructural analysis of the SPSed specimens (using scanning electron microscopy/transmission electron microscopy-selected area diffraction (SEM/TEM-SAED)) confirmed the formation of uniformly dispersed Y-Ti-O, TiO, and Ti-Cr-O nanosize complex oxide particles within the ultrafine ferritic matrix grains (~ 200 nm). The nanoindentation hardness value is found to correlate well with the compressive strength and wear resistance of the corresponding batches. The influence of V addition in Fe-14Cr-1Ti-0.25Y2O3 alloy is established to yield better thermal stability and superior mechanical properties (nanoindentation hardness of 16.7 GPa, compressive strength of 3068 MPa) as compared to Mo/Zr-stabilized alloys. This was analyzed and discussed in terms of microstructural evolution and strengthening mechanisms involved in comparison to the Mo/Zr-added steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1.D. Gosset: Structural Materials for Generation IV Nuclear Reactors, Elsevier, Amsterdam, 2017, pp. 533–67.

    Book  Google Scholar 

  2. 2.C.R.F. Azevedo: Eng. Fail. Anal., 2011, vol. 18, pp. 1943–62.

    Article  CAS  Google Scholar 

  3. 3.K.L. Murty and I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189–95.

    Article  CAS  Google Scholar 

  4. 4.A. Hojná: Metals (Basel), 2017, vol. 7, p. 392.

    Article  Google Scholar 

  5. 5.V.M.S. Muthaiah, L.H. Babu, C.C. Koch, and S. Mula: Mater. Charact., 2016, vol. 114, pp. 43–53.

    Article  CAS  Google Scholar 

  6. 6.Y. Miao, K. Mo, B. Cui, W.Y. Chen, M.K. Miller, K.A. Powers, V. McCreary, D. Gross, J. Almer, I.M. Robertson, and J.F. Stubbins: Mater. Charact., 2015, vol. 101, pp. 136–43.

    Article  CAS  Google Scholar 

  7. 7.G.R. Odette: Scripta Mater., 2018, vol. 143, pp. 142–48.

    Article  CAS  Google Scholar 

  8. 8.S.J. Zinkle, J.L. Boutard, D.T. Hoelzer, A. Kimura, R. Lindau, G.R. Odette, M. Rieth, L. Tan, and H. Tanigawa: Nucl. Fus., 2017, vol. 57, p. 17.

    Article  Google Scholar 

  9. 9.W.Z. Xu, L.L. Li, M. Saber, C.C. Koch, Y.T. Zhu, and R.O. Scattergood: J. Nucl. Mater., 2014, vol. 452, pp. 434–39.

    Article  CAS  Google Scholar 

  10. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga: Science, 2010, vol. 327, pp. 1631–34.

    Article  CAS  Google Scholar 

  11. 11.D. Chen, J. Wang, T. Chen, and L. Shao: Sci. Rep., 2013, vol. 3, pp. 1–5.

    CAS  Google Scholar 

  12. 12.S. Ukai, T. Kaito, S. Ohtsuka, T. Narita, M. Fujiwara, and T. Kobayashi: ISIJ Int., 2003, vol. 43, pp. 2038–45.

    Article  CAS  Google Scholar 

  13. 13.C. Cayron, E. Rath, I. Chu, and S. Launois: J. Nucl. Mater., 2004, vol. 335, pp. 83–102.

    Article  CAS  Google Scholar 

  14. 14.S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, and M. Fujiwara: J. Nucl. Mater., 1993, vol. 204, pp. 65–73.

    Article  CAS  Google Scholar 

  15. 15.S. Ohtsuka, S. Ukai, M. Fujiwara, T. Kaito, and T. Narita: J. Phys. Chem. Solids, 2005, vol. 66, pp. 571–75.

    Article  CAS  Google Scholar 

  16. 16.X. Zhou, C. Li, L. Yu, H. Li, and Y. Liu: Fus. Eng. Des., 2018, vol. 135, pp. 88–94.

    Article  CAS  Google Scholar 

  17. 17.T. Jaumier, S. Vincent, L. Vincent, and R. Desmorat: J. Nucl. Mater., 2019, vol. 518, pp. 274–86.

    Article  CAS  Google Scholar 

  18. 18.R. Xie, Z. Lu, C. Lu, Z. Li, X. Ding, and C. Liu: Fus. Eng. Des., 2017, vol. 115, pp. 67–73.

    Article  CAS  Google Scholar 

  19. 19.W. Li, H. Xu, X. Sha, J. Meng, W. Wang, C. Kang, X. Zhang, and Z. Wang: Fus. Eng. Des., 2018, vol. 137, pp. 71–78.

    Article  CAS  Google Scholar 

  20. 20.V. Mihalache, I. Mercioniu, A. Velea, and P. Palade: Powder Technol., 2019, vol. 347, pp. 103–13.

    Article  CAS  Google Scholar 

  21. 21.A. García‐Junceda, E. Macía, D. Garbiec, M. Serrano, J.M. Torralba, and M. Campos: Metals (Basel), 2020, vol. 10, p. 348.

    Article  Google Scholar 

  22. 22.S.S. Mishra, D. Chaira, and S.K. Karak: Ceram. Int., 2019, vol. 45, pp. 20555–20565.

    Article  CAS  Google Scholar 

  23. 23.I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, and A. Ulbricht: J. Nucl. Mater., 2016, vol. 472, pp. 206–14.

    Article  CAS  Google Scholar 

  24. 24.M. Goto, S.Z. Han, T. Yamamoto, J. Kitamura, J.H. Ahn, T. Yakushiji, S.S. Kim, and J. Lee: Int. J. Fatigue, 2016, vol. 92, pp. 577–87.

    Article  CAS  Google Scholar 

  25. 25.M. Goto, T. Yamamoto, S.Z. Han, S. Kim, J. Kitamura, T. Yakushiji, J.-H. Ahn, R. Takanami, T. Utsunomiya, and J. Lee: Int. J. Fatigue, 2020, vol. 142, p. 105978.

    Article  Google Scholar 

  26. 26.D. Roy, R. Mitra, T. Chudoba, Z. Witczak, W. Lojkowski, H.J. Fecht, and I. Manna: Mater. Sci. Eng. A, 2008, vol. 497, pp. 93–100.

    Article  Google Scholar 

  27. 27.S. Bera, W. Lojkowsky, and I. Manna: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3276–83.

    Article  CAS  Google Scholar 

  28. S.S. Singh, D. Roy, R. Mitra, R.V. SubbaRao, R.K. Dayal, B. Raj, and I. Manna: Mater. Sci. Eng. A, 2009, vol. 501, pp. 242–47.

    Article  Google Scholar 

  29. 29.Z.Y. Hu, Z.H. Zhang, X.W. Cheng, F.C. Wang, Y.F. Zhang, and S.L. Li: Mater. Des., 2020, vol. 191, p. 108662.

    Article  CAS  Google Scholar 

  30. 30.S.R. Oke, O.O. Ige, O.E. Falodun, A.M. Okoro, M.R. Mphahlele, and P.A. Olubambi: Int. J. Adv. Manuf. Technol., 2019, vol. 102, pp. 3271–90.

    Article  Google Scholar 

  31. 31.M. Omori: Mater. Sci. Eng. A, 2000, vol. 287, pp. 183–88.

    Article  Google Scholar 

  32. 32.Q. Zhao, Z. Qiao, Y. Liu, L. Yu, Y. Huang, Q. Guo, and H. Li: Metals (Basel), 2019, vol. 9, p. 200.

    Article  CAS  Google Scholar 

  33. 33.S. Abbasi and A. Shokuhfar: J. Iron Steel Res. Int., 2007, vol. 14, pp. 74–78.

    Article  CAS  Google Scholar 

  34. 34.H. Dong, L. Yu, Y. Liu, C. Liu, H. Li, and J. Wu: Fus. Eng. Des., 2017, vol. 125, pp. 402–06.

    Article  CAS  Google Scholar 

  35. 35.S. Sooraj, V.M.S. Muthaiah, P.C. Kang, C.C. Koch, and S. Mula: Philos. Mag., 2016, vol. 96, pp. 2649–70.

    Article  CAS  Google Scholar 

  36. 36.V.M.S. Muthaiah and S. Mula: Mater. Sci. Eng. A, 2019, vol. 739, pp. 367–76.

    Article  CAS  Google Scholar 

  37. 37.C. Suryanarayana and M.G. Norton: X-Ray Diffraction, Springer, New York, NY, 1998.

    Book  Google Scholar 

  38. 38.C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  39. 39.P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4579–84.

    Article  Google Scholar 

  40. 40.M.B. Shongwe, S. Diouf, M.O. Durowoju, and P.A. Olubambi: J. Alloys Compd., 2015, vol. 649, pp. 824–32.

    Article  CAS  Google Scholar 

  41. 41.V.M.S. Muthaiah and S. Mula: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 990–1005.

    Article  Google Scholar 

  42. X. Boulnat: Ph.D. Dissertation, INSA, Lyon, 2012.

  43. 44.M.J. Alinger, G.R. Odette, and D.T. Hoelzer: J. Nucl. Mater., 2004, vols. 329–333, pp. 382–86.

    Article  Google Scholar 

  44. 45.T. Okuda and M. Fujiwara: J. Mater. Sci. Lett., 1995, vol. 14, pp. 1600–03.

    Article  CAS  Google Scholar 

  45. 46.S. Ukai and M. Fujiwara: J. Nucl. Mater., 2002, vols. 307–311, pp. 749–57.

    Article  Google Scholar 

  46. 47.L. Toualbi, M. Ratti, G. André, F. Onimus, and Y. De Carlan: J. Nucl. Mater., 2011, vol. 417, pp. 225–28.

    Article  CAS  Google Scholar 

  47. 48.Y. Kimura, S. Takaki, S. Suejima, R. Uemori, and H. Tamehiro: ISIJ Int., 1999, vol. 39, pp. 176–82.

    Article  CAS  Google Scholar 

  48. 49.L. Dai, Y. Liu, and Z. Dong: Powder Technol., 2012, vol. 217, pp. 281–87.

    Article  CAS  Google Scholar 

  49. 50.T. Liu, H. Shen, C. Wang, and W. Chou: Progr. Nat. Sci. Mater. Int., 2013, vol. 23, pp. 434–39.

    Article  Google Scholar 

  50. 51.P.K. Parida, A. Dasgupta, K. Jayasankar, M. Kamruddin, and S. Saroja: J. Nucl. Mater., 2013, vol. 441, pp. 331–36.

    Article  CAS  Google Scholar 

  51. 52.S.K. Karak, J.D. Majumdar, W. Lojkowski, A. Michalski, L. Ciupinski, K.J. Kurzydowski, and I. Manna: Philos. Mag., 2012, vol. 92, pp. 516–34.

    Article  CAS  Google Scholar 

  52. 53.H. Zhang, Y. Huang, H. Ning, C.A. Williams, A.J. London, K. Dawson, Z. Hong, M.J. Gorley, C.R.M. Grovenor, G.J. Tatlock, S.G. Roberts, M.J. Reece, H. Yan, and P.S. Grant: J. Nucl. Mater., 2015, vol. 464, pp. 61–68.

    Article  CAS  Google Scholar 

  53. A. Claisse and P. Olsson: Nucl. Instrum. Meth. Phys. Res, 2013, vol. 303, pp. 18–22.

    Article  CAS  Google Scholar 

  54. 55.H. Sakasegawa, F. Legendre, L. Boulanger, M. Brocq, L. Chaffron, T. Cozzika, J. Malaplate, J. Henry, and Y. De Carlan: J. Nucl. Mater., 2011, vol. 417, pp. 229–32.

    Article  CAS  Google Scholar 

  55. 56.N. Sallez, C. Hatzoglou, F. Delabrouille, D. Sornin, L. Chaffron, M. Blat-Yrieix, B. Radiguet, P. Pareige, P. Donnadieu, and Y. Bréchet: J. Nucl. Mater., 2016, vol. 472, pp. 118–26.

    Article  CAS  Google Scholar 

  56. 57.S. Yamashita, S. Ohtsuka, N. Akasaka, S. Ukai, and S. Ohnuki: Philos. Mag. Lett., 2004, vol. 84, pp. 525–29.

    Article  CAS  Google Scholar 

  57. 58.S. Pasebani, I. Charit, Y.Q. Wu, D.P. Butt, and J.I. Cole: Acta Mater., 2013, vol. 61, pp. 5605–17.

    Article  CAS  Google Scholar 

  58. 59.B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3277–86.

    Article  CAS  Google Scholar 

  59. E. Broitman: Tribol. Lett., 2017, 65, vol. 65.

  60. C. OnChui and K.C. Saraswat: Germanium-Based Technologies, Elsevier, Amsterdam, 2007, pp. 295–361.

    Book  Google Scholar 

  61. 62.R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, and C.S. Liu: J. Nucl. Mater., 2014, vol. 444, pp. 462–68.

    Article  CAS  Google Scholar 

  62. 63.P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and F. Abe: J. Nucl. Mater., 2014, vol. 444, pp. 441–53.

    Article  CAS  Google Scholar 

  63. 64.T. Liu, L. Wang, C. Wang, H. Shen, and H. Zhang: Mater. Des., 2015, vol. 88, pp. 862–70.

    Article  CAS  Google Scholar 

  64. O. Vingsbo, A.R. Massih, and S. Nilsson: J. Tribol., 1996, vol. 118.

  65. 66.J.H. Sung, T.H. Kim, and S.S. Kim: Wear, 2001, vols. 250–251, pp. 658–64.

    Article  Google Scholar 

  66. S.K. Karak, C.S. Vishnu, Z. Witczak, W. Lojkowski, J. DuttaMajumdar, and I. Manna: Wear, 2010, vol. 270, pp. 5–11.

    Article  CAS  Google Scholar 

  67. 68.S. Gupta, S.K. Sharma, B.V.M. Kumar, and Y.W. Kim: Ceram. Int., 2015, vol. 41, pp. 14780–14789.

    Article  CAS  Google Scholar 

  68. 69.R.V. Kurahatti, A.O. Surendranathan, A.V.R. Kumar, C.S. Wadageri, V. Auradi, and S.A. Kori: Proc. Mater. Sci., 2014, vol. 5, pp. 274–80.

    Article  CAS  Google Scholar 

  69. 70.F.H. Stott and G.C. Wood: Tribol. Int., 1978, vol. 11, pp. 211–18.

    Article  CAS  Google Scholar 

  70. 71.F.H. Stott, J. Glascott, and G.C. Wood: Wear, 1985, vol. 101, pp. 311–24.

    Article  Google Scholar 

  71. 72.L. Wang and D.Y. Li: Wear, 2003, vol. 255, pp. 535–44.

    Article  CAS  Google Scholar 

  72. 73.H. Cui, J. Guo, Y. Su, H. Ding, W. Bi, X. Li, and H. Fu: Mater. Sci. Eng. A, 2007, vol. 448, pp. 49–55.

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the Metallurgical and Materials Engineering Department and Institute Instrumentation Centre, IIT Roorkee, for providing the facilities and support while we carried out this research work. This research was not supported by any specific grant from any funding agency in either the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhrit Mula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 30, 2020; accepted November 2, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, M.J., Muthaiah, V.M.S. & Mula, S. Yttria-Reinforced Fe-Cr Ferritic Alloy-Based Nanocomposites for Fusion Reactor Structural Applications. Metall Mater Trans A 52, 627–643 (2021). https://doi.org/10.1007/s11661-020-06102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06102-7

Navigation