Skip to main content
Log in

Effects of Microstructural Morphology on Formability, Strain Localization, and Damage of Ferrite-Pearlite Steels: Experimental and Micromechanical Approaches

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper attempts to predict how the microstructural features and mechanical properties of the individual constituents affect the deformation behavior and formability of ferrite-pearlite steels under quasi-static loading at room temperature. For this purpose, finite element simulations using representative volume elements (RVEs) based on the real microstructures were implemented to model the flow behavior of the ferrite-pearlite steels with various microstructural morphologies (non-banded and banded). The homogenized flow curves obtained from the RVEs subjected to periodic boundary conditions together with displacement boundary conditions were validated with the experimental results of the uniaxial tensile tests. Then, the initial microstructural inhomogeneity and Johnson–Cook damage criteria were employed for both non-banded and banded RVEs to estimate the onset of plastic instability under different loading paths ranging from uniaxial tension to equi-biaxial tension. Finally, the forming limit diagrams of both ferritic-pearlitic microstructures were predicted, which show a good agreement with the experimental results of the Nakazima stretch-forming tests (less than 13 pct error). It implies that the initial microstructural inhomogeneity criterion adequately enables to predict the plastic instability in the ferritic-pearlitic steel sheets without using any damage or failure criterion. The most commonly observed damage mechanism is the severe plastic deformation of the ferrite grains near the pearlite colonies due to the strength contrast between ferrite and pearlite. Another significant finding is that the microstructural morphology has a crucial influence on the strain partitioning, strain localization, and formability of the ferritic-pearlitic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. K. D. H. Bhadeshia and R. W. K. Honeycombe: Steels: Microstructure and Properties, 4th ed., Butterworth-Heinemann, Oxford, 2017, pp. 59-100.

    Book  Google Scholar 

  2. W. D. Callister and D. G. Rethwisch: Materials Science and Engineering: An Introduction, 10th ed., John Wiley & Sons, New York, 2018, pp. 392-449.

    Google Scholar 

  3. G. J. Shiflet: Pearlite, Encyclopedia of Materials: Science and Technology, 1st ed., Elsevier, Amsterdam, 2001, pp. 6783-88.

    Book  Google Scholar 

  4. J. D. Verhoeven: J. Mater. Eng. Perform, 2000, vol. 9, pp. 286-96.

    Article  CAS  Google Scholar 

  5. R. Großterlinden, R. Kawalla, U. Lotter and H. Pircher: Steel Res., 1992, vol. 63, pp. 331-36.

    Article  Google Scholar 

  6. T. F. Majka, D. K. Matlock and G. Krauss: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1627–37.

    Article  CAS  Google Scholar 

  7. H. Farahani, W. Xu and S. van der Zwaag: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1998–2010.

    Article  Google Scholar 

  8. G. Krauss: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 781-92.

    Article  CAS  Google Scholar 

  9. S. E. Offerman, N. H. van Dijk, M. T. Rekveldt, J. Sietsma and S. van der Zwaag: Mater. Sci. Technol., 2002, vol. 18, pp. 297-303.

    Article  CAS  Google Scholar 

  10. X. Zhang, Y. Wang, J. Yang, Z. Qiao, C. Ren and C. Chen: Opt. Laser Eng., 2016, vol. 85, pp. 24-28.

    Article  Google Scholar 

  11. D. Rèche, J. Besson, T. Sturel, X. Lemoine and A. F. Gourgues-Lorenzon: Int. J. Mech. Sci., 2012, vol. 57, pp. 43–53.

    Article  Google Scholar 

  12. D. Rèche, T. Sturel, O. Bouaziz, A. Col and A. F. Gourgues-Lorenzona: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5241-50.

    Article  Google Scholar 

  13. A. J. Kaijalainen, P. Suikkanen, L. P. Karjalainen and J. J. Jonas: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1273-83.

    Article  CAS  Google Scholar 

  14. F. M. Al-Abbasi: Mech. Mater., 2013, vol. 63, pp. 48-64.

    Article  Google Scholar 

  15. G. Laschet, P. Fayek, T. Henke, H. Quade and U. Prahl: Mat. Sci. Eng. A, 2013, vol. 566, pp. 143-56.

    Article  CAS  Google Scholar 

  16. R. Rodriguez and I. Gutierrez: Mater. Sci. Forum, 2003, Vols. 426-432, pp. 4525-30.

    Article  Google Scholar 

  17. I. Gutierrez: Metalurgija, 2012, vol. 11, pp. 201-14.

    Google Scholar 

  18. B. Berisha, C. Raemy, C. Becker, M. Gorji and P. Hora: Acta Mater., 2015, vol. 100, pp. 191-201.

    Article  CAS  Google Scholar 

  19. L. Wang, D. Tang and Y. Song: Iron. Steel Res. Int., 2017, vol. 24, pp. 321-27.

    Article  Google Scholar 

  20. [20] D. Banabic: Multiscale Modelling in Sheet Metal Forming, 1st ed., Springer, Switzerland, 2016, pp. 205-300.

    Book  Google Scholar 

  21. H. Noori and R. Mahmudi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2040–52.

    Article  CAS  Google Scholar 

  22. E. M. Viatkina, W. A. M. Brekelmans and M. G. D. Geers: J. Mater. Process., 2005, vol. 168, pp. 211-18.

    Article  CAS  Google Scholar 

  23. H. P. Gänser, E. Werner and F. Fischer: Int. J. Mech. Sci., 2000, vol. 42, pp. 2041-54.

    Article  Google Scholar 

  24. R. Wesenjak, C. Krempaszky and E. Werner: Comput. Mater. Sci., 2016, vol. 111, pp. 277–88.

    Article  CAS  Google Scholar 

  25. X. Duan, M. Jain and D. S. Wilkinson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3489-501.

    Article  CAS  Google Scholar 

  26. V. Uthaisangsuk, U. Prahl and W. Bleck: Eng. Fract. Mech., 2011, vol. 78, pp. 469-86.

    Article  Google Scholar 

  27. W. M. Mohammed and E. N. M. A. Elbestawi: J. Manuf. Sci. Tec., 2012, vol. 5, pp. 87-101.

    Article  Google Scholar 

  28. Z. Li, R. Kiran, J. Hu, L. G. Hector Jr and A. F. Bower: Int. J. Fract., 2020, vol. 221, pp. 53–85.

    Article  CAS  Google Scholar 

  29. M. Murugesan and D. W. Jung: Materials, 2019, vol. 12, p. 609.

    Article  CAS  Google Scholar 

  30. N. Ayachi, N. Guermazi, C. H. Pham and P. -Y. Manach: Metals, 2020, vol. 10, p. 1163.

    Article  Google Scholar 

  31. X. Hu, P. V. Houtte, M. Liebeherr, A. Walentek, M. Seefeldt and H. Vandekinderen: Acta Mater., 2006, vol. 54, pp. 1029-40.

    Article  CAS  Google Scholar 

  32. ASTM E112 – 13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013.

  33. M. Hajian and A. Assempour: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1757–67.

    Article  Google Scholar 

  34. A. Ghazanfari and A. Assempour: Mater. Des., 2012, vol. 34, pp. 185–91.

    Article  Google Scholar 

  35. W. Choi, P. P. Gillis and S. E. Jones: Metall. Trans. A, 1989, vol. 20A, pp. 1975-88.

    Article  CAS  Google Scholar 

  36. National Institute of Standards and Technology (NIST):OOF: Finite Element Analysis of Microstructures, https://www.ctcms.nist.gov/oof/oof2/.

  37. S. L. Omairey, P. D. Dunning and S. Sriramula: Eng.Comput., 2019, vol. 35, pp. 567–77.

    Article  Google Scholar 

  38. Z. Xia, Y. Zhang and F. Ellyin: Int. J. Solids Struct., 2003, vol. 40, pp. 1907-21.

    Article  Google Scholar 

  39. G. R. Johnson and W. H. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31-48.

    Article  Google Scholar 

  40. M. Murugesan and D. W. Jung: Materials, 2019, vol. 12, pp. 1-18.

    Article  Google Scholar 

  41. G. H. Majzoobi and F. Rahimi-Dehgolan. Procedia Eng., 2011, 10: 764–73.

    Article  Google Scholar 

  42. M. Ohata, M. Suzuki, A. Ui and F. Minami: Eng. Fract. Mech., 2010, vol. 77, pp. 277-84.

    Article  Google Scholar 

  43. Z. Marciniak and K. Kuczyński: Int. J. Mech. Sci., 1967, vol. 9, pp. 609-12.

    Article  Google Scholar 

  44. L. Chuzhoy, R. E. DeVor, S. G. Kapoor and D. J. Bammann: J. Manuf. Sci. Eng., 2002, vol. 124, pp. 162-69.

    Article  Google Scholar 

  45. G. Ljustina, M. Fagerström and R. Larsson: Eur. J. Mech. A-Solids, 2013, vol. 37, pp. 57-68.

    Article  Google Scholar 

  46. H. Qiu, T. Inoue and R. Ueji: Metals, 2020, vol. 10, p. 530.

    Article  Google Scholar 

  47. Z. Zhang and Y. Liao: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1621–28.

    Article  CAS  Google Scholar 

  48. A. Ramazani, H. Quade, M. Abbasi and U. Prahl: Mat. Sci. Eng. A, 2016, vol. 651, pp. 160–64.

    Article  CAS  Google Scholar 

  49. D. S. Connolly, C. P. Kohar, W. Muhammad, L. G. Hector Jr., R. K. Mishra and K. Inal: Int. J. Plast., 2020, vol. 133, p. 102757.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Assempour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on June 19, 2020, accepted November 24, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isavand, S., Assempour, A. Effects of Microstructural Morphology on Formability, Strain Localization, and Damage of Ferrite-Pearlite Steels: Experimental and Micromechanical Approaches. Metall Mater Trans A 52, 711–725 (2021). https://doi.org/10.1007/s11661-020-06115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06115-2

Navigation