Skip to main content

Advertisement

Log in

Performance improvement of low frequency piezoelectric energy harvester incorporating holes with an in-house experimental set-up

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The piezoelectric energy harvesters can be an integral part of self-powered sensor system due to its compatibility with semiconductor technology. In this paper, a modified structural geometry has been proposed in order to improve the performance of energy harvesters with classical cantilever topology by incorporating through holes. A detail mathematical analysis has been carried out to manifest the effect of through hole on resonant frequency of piezo harvester using Rayleigh–Ritz method. The theoretical analysis is validated through simulation studies as well as experimental results. Accordingly, an in-house low cost experimental set-up has been developed using Polyvinylidinefluoride (PVDF) based macro-level energy harvester and loud speaker based vibration set-up. It has been observed that the resonant frequency is reduced from 26.23 Hz to 21.94 Hz due to incorporation of hole to classical cantilever for a given dimension. With input acceleration of 3.7 g, the developed macro-harvester set-up resonates at 23 Hz and is capable of producing power of 59.93 \(\mu\)W with hole based structure whereas power of 14.60 \(\mu\)W is obtained in case of without hole based structure. The macro-scale energy harvester with modified geometry has been also designed and simulated in finite element analysis method to validate the mathematical analysis and it is found that lower the resonant frequency higher the power obtained with the hole based topology. It is verified from the experimental, simulation and theoretical studies, that there is a dominant effect of through hole in the performance improvement of piezoelectric energy harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hou L, Bergmann NW (2012) Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Trans Instrum Meas 61(10):2787

    Article  Google Scholar 

  2. Mois G, Folea S, Sanislav T (2017) Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans Instrum Meas 66(8):2056

    Article  Google Scholar 

  3. Shirmohammadi S, Barbe K, Grimaldi D, Rapuano S, Grassini S (2016) Instrumentation and measurement in medical, biomedical, and healthcare systems. IEEE Instrum Meas Magazine 19(5):6

    Article  Google Scholar 

  4. Mukherjee B, Swamy KBM, Sen S (2019) A New Analysis on Reduction of Undesired Beam Bending in Electrostatic Comb Drive MEMS Actuator. IEEE Trans Instrum Meas 69(2):488

    Article  Google Scholar 

  5. Li Y, Wang Y, Cao Q, Cao J, Qiao D (2019) A self-powered vibration sensor with wide bandwidth. IEEE Trans Ind Electr 67:560

    Article  Google Scholar 

  6. He Q, Dong C, Li K, Wang J, Xu D, Li X (2017) A self-powered wireless sensing node for ambient vibration pattern identification by using a hybrid energy-harvesting mode. In: 2017 19th International conference on solid-state sensors, actuators and microsystems (TRANSDUCERS) (IEEE), pp 367–370

  7. Dai K, Wang X, Yi F, Jiang C, Li R, You Z (2018) Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact. Nano Energy 45:84

    Article  Google Scholar 

  8. Xiang C, Liu C, Hao C, Wang Z, Che L, Zhou X (2017) A self-powered acceleration sensor with flexible materials based on triboelectric effect. Nano energy 31:469

    Article  Google Scholar 

  9. Biswal P, Verma N, Kar SK, Mukherjee B (2018) Development and performance analysis of a low cost experimental set up for piezoelectric based energy harvester using loudspeaker. In: 2018 15th IEEE India council international conference (INDICON) (IEEE), pp 1–5

  10. Usharani R, Uma G, Umapathy M, Choi SB (2017) A new piezoelectric-patched cantilever beam with a step section for high performance of energy harvesting. Sens Actuators A 265:47

    Article  Google Scholar 

  11. Dhakar L, Liu H, Tay F, Lee C (2013) A new energy harvester design for high power output at low frequencies. Sens Actuators A 199:344

    Article  Google Scholar 

  12. Xiong Y, Song F, Leng X (2019) A piezoelectric cantilever-beam energy harvester (PCEH) with a rectangular hole in the metal substrate. Microsyst Technol 26:801–810

    Article  Google Scholar 

  13. Saeedi K, Leo A, Bhat RB, Stiharu I (2012) Vibration of circular plate with multiple eccentric circular perforations by the Rayleigh-Ritz method. J Mech Sci Technol 26(5):1439

    Article  Google Scholar 

  14. Kwak MK, Han S (2007) Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method. J Sound Vib 306(1–2):12

    Article  Google Scholar 

  15. Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20(5):1131

    Article  Google Scholar 

  16. Castagnetti D, Radi E (2018) A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment. Meccanica 53(11–12):2725

    Article  Google Scholar 

  17. Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025009

    Article  Google Scholar 

  18. Felix JLP, Balthazar JM, Rocha RT, Tusset AM, Janzen FC (2018) On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53(13):3177

    Article  MathSciNet  Google Scholar 

  19. Leadenham S, Erturk A (2015) Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances. Smart Mater Struct 24(5):055021

    Article  Google Scholar 

  20. Rezaeisaray M, El Gowini M, Sameoto D, Raboud D, Moussa W (2015) Low frequency piezoelectric energy harvesting at multi vibration mode shapes. Sens Actuators A 228:104

    Article  Google Scholar 

  21. Chaudhuri D, Kundu S, Chattoraj N (2019) Design and analysis of MEMS based piezoelectric energy harvester for machine monitoring application. Microsyst Technol 25(4):1437

    Article  Google Scholar 

  22. Tian Y, Li G, Yi Z, Liu J, Yang B (2018) A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J Phys Chem Solids 117:21

    Article  Google Scholar 

  23. Litak G, Friswell MI, Adhikari S (2016) Regular and chaotic vibration in a piezoelectric energy harvester. Meccanica 51(5):1017

    Article  MathSciNet  Google Scholar 

  24. Syta A, Bowen C, Kim H, Rysak A, Litak G (2015) Experimental analysis of the dynamical response of energy harvesting devices based on bistable laminated plates. Meccanica 50(8):1961

    Article  Google Scholar 

  25. Fernando SN, Chaffey J (2005) Maximising microcantilever response: an analytical approach using mathematical models. In: Smart structures, devices, and systems II, vol. 5649 International society for optics and photonics, vol. 5649, pp 265–275

  26. Swamy KB, Mukherjee B, Mohammed ZAS, Chakraborty S, Sen S (2014) Performance evaluation ofperforated micro-cantilevers for MEMS applications. J Micro/Nanolithography MEMS MOEMS 13(2):023001

    Article  Google Scholar 

  27. Younis MI (2011) Microbeams. In: MEMS linear and nonlinear statics and dynamics (Springer), pp. 251–357

  28. Beer F, Johnston E Jr, Dewolf J, Mazurek D (2010) Mechanics of materials, sixth edit edition. Mcgraw-Hill education, United States

    Google Scholar 

  29. Biswal P, Kar SK, Mukherjee B (2020) Design and optimization of high-performance through hole based MEMS energy harvester using PiezoMUMPs. J Elec Materi. https://doi.org/10.1007/s11664-020-08528-6

    Article  Google Scholar 

  30. Jia Y, Seshia AA (2016) Five topologies of cantilever-based MEMS piezoelectric vibration energy harvesters: a numerical and experimental comparison. Microsyst Technol 22(12):2841

    Article  Google Scholar 

  31. Wang L, Lu D, Jiang Z, Jia C, Wu Y, Zhou X, Zhao L, Zhao Y (2018) A piezoelectric cantilever with novel large mass for harvesting energy from low frequency vibrations. AIP Adv 8(11):115205

    Article  Google Scholar 

  32. Roundy SJ (2003) Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Ph.D. thesis, University of California, Berkeley Berkeley, CA

Download references

Acknowledgements

The authors would like to acknowledge Science and Engineering Research Board (SERB), DST, Govt. of India for funding support for the work under the sanction number ECR/2017/000543. We also acknowledge IIT Kharagpur for finite element analysis simulation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Biswal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In order to compute resonant frequency analytically, the segments of the cantilever harvester can be divided into three sections along the length direction. The first segment will be a distance from reference frame to origin of the hole i.e x=0 to x=\(\alpha\)L. Then, the second segment consists of the through hole section along the length direction which comprises two factors i.e. location factor \(\alpha\) and length factor \(\eta\), thus the integration limit lies between \(\alpha\)L and (\(\alpha\) + \(\eta\) )L  . Finally, the third segment is from end of through hole (\(\alpha\) + \(\eta\) )L   to ‘L’. Numerator (8) can be boiled down to to the following (9):

$$\begin{aligned}&Numerator =N= \int \limits _0^L {I{{\left( {\frac{{{d^2}X}}{{d{x^2}}}} \right) }^2}dx} \,\,\end{aligned}$$
(8)
$$\begin{aligned}&N= 144I\left[ {\frac{{{x^5}}}{{5{L^8}}} - \frac{{{x^4}}}{{{L^7}}}+ \frac{{2{x^3}}}{{{L^6}}}- \frac{{2{x^2}}}{{{L^5}}} + \frac{x}{{{L^4}}}} \right] _0^{\alpha L}\nonumber \\&\qquad +144\chi I\left[ {\frac{{{x^5}}}{{5{L^8}}} - \frac{{{x^4}}}{{{L^7}}} + \frac{{2{x^3}}}{{{L^6}}} - \frac{{2{x^2}}}{{{L^5}}} + \frac{x}{{{L^4}}}} \right] _{\alpha L}^{(\alpha + \eta )L} \nonumber \\&\qquad + 144I\left[ {\frac{{{x^5}}}{{5{L^8}}} - \frac{{{x^4}}}{{{L^7}}} + \frac{{2{x^3}}}{{{L^6}}} - \frac{{2{x^2}}}{{{L^5}}} + \frac{x}{{{L^4}}}} \right] _{(\alpha + \eta )L}^L.\end{aligned}$$
(9)
$$\begin{aligned}&Numerator = \,G + H + K\, \end{aligned}$$
(10)

where

$$\begin{aligned}&G= 144I\left[ {\frac{{{x^5}}}{{5{L^8}}} - \frac{{{x^4}}}{{{L^7}}} + \frac{{2{x^3}}}{{{L^6}}} - \frac{{2{x^2}}}{{{L^5}}} + \frac{x}{{{L^4}}}} \right] _0^{\alpha L}\nonumber \\&\quad = 144I\left[ {\frac{{{\alpha ^5}}}{{5{L^3}}} - \frac{{{\alpha ^4}}}{{{L^3}}} + \frac{{2{\alpha ^3}}}{{{L^3}}} - \frac{{2{\alpha ^2}}}{{{L^3}}} + \frac{\alpha }{{{L^3}}}} \right] \end{aligned}$$
(11)
$$\begin{aligned}&H = \,144\chi I\left[ {\frac{{{x^5}}}{{5{L^8}}} - \frac{{{x^4}}}{{{L^7}}} + \frac{{2{x^3}}}{{{L^6}}} - \frac{{2{x^2}}}{{{L^5}}} + \frac{x}{{{L^4}}}} \right] _{\alpha L}^{(\alpha + \eta )L} \nonumber \\&H = \frac{{144}}{{{L^3}}}\chi I\left[ {\frac{{{{(\alpha + \eta )}^5}}}{5} - \frac{{{\alpha ^5}}}{5} - {{(\alpha + \eta )}^4} + {\alpha ^4}} \right] \nonumber \\&\qquad + \,\frac{{144}}{{{L^3}}}\chi I\,\,\,\left[ {2{{(\alpha + \eta )}^3} - 2{\alpha ^3} - 2{{(\alpha + \eta )}^2} + 2{\alpha ^2} + \eta } \right] \, \end{aligned}$$
(12)
$$\begin{aligned}&K = 144I\left[ {\frac{{{x^5}}}{{5{L^8}}} - \frac{{{x^4}}}{{{L^7}}} + \frac{{2{x^3}}}{{{L^6}}} - \frac{{2{x^2}}}{{{L^5}}} + \frac{x}{{{L^4}}}} \right] _{(\alpha + \eta )L}^L \nonumber \\&K = \frac{{144I}}{{{L^3}}}\left[ {\frac{1}{5} - \frac{{{{(\alpha + \eta )}^5}}}{5} + {{(\alpha + \eta )}^4}} \right] \nonumber \\&\qquad + \frac{{144I}}{{{L^3}}}\left[ { - 2{{(\alpha + \eta )}^3} + 2{{(\alpha + \eta )}^2} - (\alpha + \eta )} \right] \end{aligned}$$
(13)

Now,

$$\begin{aligned}&N = 144I\left[ {\frac{{{\alpha ^5}}}{{5{L^3}}} - \frac{{{\alpha ^4}}}{{{L^3}}} + \frac{{2{\alpha ^3}}}{{{L^3}}} - \frac{{2{\alpha ^2}}}{{{L^3}}} + \frac{\alpha }{{{L^3}}}} \right] \nonumber \\&\qquad + \frac{{144}}{{{L^3}}}\chi I\left[ {\frac{{{{(\alpha + \eta )}^5}}}{5} - \frac{{{\alpha ^5}}}{5} - {{(\alpha + \eta )}^4} + {\alpha ^4} + 2{{(\alpha + \eta )}^3}} \right] \nonumber \\&\qquad + \frac{{144}}{{{L^3}}}\chi I\left[ { - 2{\alpha ^3} - 2{{(\alpha + \eta )}^2} + 2{\alpha ^2} + \eta } \right] \nonumber \\&\qquad + \frac{{144I}}{{{L^3}}}\left[ {\frac{1}{5} - \frac{{{{(\alpha + \eta )}^5}}}{5} + {{(\alpha + \eta )}^4}} \right] \nonumber \\&\qquad + \frac{{144I}}{{{L^3}}}\left[ { - 2{{(\alpha + \eta )}^3} + 2{{(\alpha + \eta )}^2} - (\alpha + \eta )} \right] \, \end{aligned}$$
(14)
$$\begin{aligned}&N = \frac{{144I}}{{5{L^3}}}\left[ { - \left\{ {{{(\alpha + \eta )}^5} - {\alpha ^5}} \right\} + 5\left\{ {{{(\alpha + \eta )}^4}} \right\} } \right] \nonumber \\&\qquad + \frac{{144I}}{{5{L^3}}}\left[ { - 5{\alpha ^4}} \right] \nonumber \\&\qquad + \frac{{144I}}{{5{L^3}}}\left[ { - 10\left\{ {{{(\alpha + \eta )}^3} - {\alpha ^3}} \right\} + \ldots - 5\eta + 1} \right] \nonumber \\&\qquad + \frac{{144I}}{{5{L^3}}}\left[ {\chi \left\{ {\left\{ {{{(\alpha + \eta )}^5} - {\alpha ^5}} \right\} - 5\left\{ {{{(\alpha + \eta )}^4} - {\alpha ^4}} \right\} } \right\} } \right] \nonumber \\&\qquad + \frac{{144I}}{{5{L^3}}}\left[ {\chi \left\{ {10\left\{ {{{(\alpha + \eta )}^3} - {\alpha ^3}} \right\} - 10\left\{ {{{(\alpha + \eta )}^2} - {\alpha ^2}} \right\} } \right\} } \right] \nonumber \\&\qquad + \frac{{144I}}{{5{L^3}}}\chi 5\eta \end{aligned}$$
(15)

Hence,

$$\begin{aligned}&Numerator = \frac{{144I}}{{5{L^3}}}\left[ { - Q \times 1 + 1 + \chi \times Q} \right] \nonumber \\&\quad = \frac{{144I}}{{5{L^3}}}\left[ {1 - Q(1 - \chi )} \right] \, \end{aligned}$$
(16)
$$\begin{aligned}&Denominator = \int \limits _0^L {A{X^2}dx} \end{aligned}$$
(17)
$$\begin{aligned}&\int {{X^2}dx = \frac{{{x^9}}}{{9{L^8}}}\,} - \frac{{{x^8}}}{{{L^7}}} + \frac{{4{x^7}}}{{{L^6}}} - \frac{{8{x^6}}}{{{L^5}}} + \frac{{36{x^5}}}{{5{L^4}}} \end{aligned}$$
(18)
$$\begin{aligned}&\int \limits _0^L {A{X^2}dx} \, = bh\left[ {\frac{{{x^9}}}{{9{L^8}}} - \frac{{{x^8}}}{{{L^7}}} + \frac{{4{x^7}}}{{{L^6}}} - \frac{{8{x^6}}}{{{L^5}}} + \frac{{36{x^5}}}{{5{L^4}}}} \right] _0^{\alpha L}\nonumber \\&\qquad + (1 - \beta )bh\left[ {\frac{{{x^9}}}{{9{L^8}}} - \frac{{{x^8}}}{{{L^7}}} + \frac{{4{x^7}}}{{{L^6}}} - \frac{{8{x^6}}}{{{L^5}}} + \frac{{36{x^5}}}{{5{L^4}}}} \right] _{\alpha L}^{(\alpha + \eta )L}\nonumber \\&\qquad + bh\left[ {\frac{{{x^9}}}{{9{L^8}}} - \frac{{{x^8}}}{{{L^7}}} + \frac{{4{x^7}}}{{{L^6}}} - \frac{{8{x^6}}}{{{L^5}}} + \frac{{36{x^5}}}{{5{L^4}}}} \right] _{(\alpha + \eta )L}^L \end{aligned}$$
(19)
$$\begin{aligned}&\int \limits _0^L {A{X^2}dx} \, = S + T + U \end{aligned}$$
(20)

Where,

$$\begin{aligned}&S = bhL\left[ {\frac{{{\alpha ^9}}}{9} - {\alpha ^8} + 4{\alpha ^7} - 8{\alpha ^6} + \frac{{36{\alpha ^5}}}{5}} \right] \end{aligned}$$
(21)
$$\begin{aligned}&T = (1 - \beta )bhL\left[ {\frac{{{{(\alpha + \eta )}^9}}}{9} - \frac{{{\alpha ^9}}}{9} - {{(\alpha + \eta )}^8}} \right] \nonumber \\&\qquad + (1 - \beta )bhL\left[ {{\alpha ^8} + 4{{(\alpha + \eta )}^7} - 4{\alpha ^7}} \right] \nonumber \\&\qquad + (1 - \beta )bhL\left[ { - 8{{(\alpha + \eta )}^6} + 8{\alpha ^6} + \frac{{36{{(\alpha + \eta )}^5}}}{5} - \frac{{36{\alpha ^5}}}{5}} \right] \end{aligned}$$
(22)
$$\begin{aligned}&U = bh\left[ {\frac{{{x^9}}}{{9{L^8}}} - \frac{{{x^8}}}{{{L^7}}} + \frac{{4{x^7}}}{{{L^6}}} - \frac{{8{x^6}}}{{{L^5}}} + \frac{{36{x^5}}}{{5{L^4}}}} \right] _{(\alpha + \eta )L}^L \nonumber \\&U = bhL\left[ {\frac{1}{9} - \frac{{{{(\alpha + \eta )}^9}}}{9} + {{(\alpha + \eta )}^8} - 4{{(\alpha + \eta )}^7} - 5} \right] \nonumber \\&\qquad + bhL\left[ {8{{(\alpha + \eta )}^6} + \frac{{36}}{5} - \frac{{36{{(\alpha + \eta )}^5}}}{5}} \right] \end{aligned}$$
(23)
$$\begin{aligned}&\int \limits _0^L {A{X^2}dx} \, = bhL\left[ {\frac{{{\alpha ^9}}}{9} - {\alpha ^8} + 4{\alpha ^7} - 8{\alpha ^6} + \frac{{36{\alpha ^5}}}{5}} \right] \nonumber \\&\qquad + (1 - \beta )bhL\left[ {\frac{{{{(\alpha + \eta )}^9}}}{9} - \frac{{{\alpha ^9}}}{9} - {{(\alpha + \eta )}^8}} \right] \nonumber \\&\qquad + (1 - \beta )bhL\left[ {{\alpha ^8} + 4{{(\alpha + \eta )}^7} - 4{\alpha ^7}} \right] \nonumber \\&\qquad + (1 - \beta )bhL\left[ { - 8{{(\alpha + \eta )}^6}+8{\alpha ^6} + \frac{{36{{(\alpha + \eta )}^5}}}{5} - \frac{{36{\alpha ^5}}}{5}} \right] \nonumber \\&\qquad + bhL\left[ {\frac{1}{9} - \frac{{{{(\alpha + \eta )}^9}}}{9}} \right] \nonumber \\&\qquad + bhL\left[ {{{(\alpha + \eta )}^8} - 4{{(\alpha + \eta )}^7} - 5} \right] \nonumber \\&\qquad + bhL\left[ {8{{(\alpha + \eta )}^6} + \frac{{36}}{5} - \frac{{36{{(\alpha + \eta )}^5}}}{5}} \right] \end{aligned}$$
(24)
$$\begin{aligned}&\int \limits _0^L {A{X^2}dx} \, = bhL\left[ {\frac{{ - 1}}{9}\left\{ {{{(\alpha + \eta )}^9} - {\alpha ^9}} \right\} } \right] \nonumber \\&\qquad + bhL\left[ {\left\{ {{{(\alpha + \eta )}^8} - {\alpha ^8}} \right\} } \right] \nonumber \\&\qquad + bhL\left[ { - 4\left\{ {{{(\alpha + \eta )}^7} - {\alpha ^7}} \right\} } \right] \nonumber \\&\qquad + bhL\left[ {8\left\{ {{{(\alpha + \eta )}^6} - {\alpha ^6}} \right\} + \frac{{104}}{5}} \right] \nonumber \\&\qquad + bhL\left[ { - \frac{{36}}{5}\left\{ {{{(\alpha + \eta )}^5} - {\alpha ^5}} \right\} } \right] \nonumber \\&\qquad + (1 - \beta )\left[ {\frac{1}{9}\left\{ {{{(\alpha + \eta )}^9} - {\alpha ^9}} \right\} - \left\{ {{{(\alpha + \eta )}^8} - {\alpha ^8}} \right\} } \right] \nonumber \\&\qquad + (1 - \beta )\left[ {4\left\{ {{{(\alpha + \eta )}^7} - {\alpha ^7}} \right\} } \right] \nonumber \\&\qquad + (1 - \beta )\left[ { - 8\left\{ {{{(\alpha + \eta )}^6} - {\alpha ^6}} \right\} + \frac{{36}}{5}\left\{ {{{(\alpha + \eta )}^5} - {\alpha ^5}} \right\} } \right] \end{aligned}$$
(25)

So,

$$\begin{aligned}&\int \limits _0^L {A{X^2}dx} \, = bhL\left[ {(1 - \beta ) \times P - P + \frac{{104}}{{45}}} \right] \nonumber \\&\quad = bhL\frac{{104}}{{45}}\left[ {(1 - \beta )P\frac{{45}}{{104}} - P\frac{{45}}{{104}} + 1} \right] \end{aligned}$$
(26)
$$\begin{aligned}&\int \limits _0^L {A{X^2}dx} \, = bhL\frac{{104}}{{45}}\left[ {1 - \beta P\frac{{45}}{{104}}} \right] \end{aligned}$$
(27)
$$\begin{aligned} where\,\,P= & {} \frac{1}{9}\left\{ {{{(\alpha + \eta )}^9} - {\alpha ^9}} \right\} - \left\{ {{{(\alpha + \eta )}^8} - {\alpha ^8}} \right\} \\&\qquad + 4\left\{ {{{(\alpha + \eta )}^7} - {\alpha ^7}} \right\} - 8\left\{ {{{(\alpha + \eta )}^6} - {\alpha ^6}} \right\} \\&\qquad + \frac{{36}}{5}\left\{ {{{(\alpha + \eta )}^5} - {\alpha ^5}} \right\} \end{aligned}$$

Now,

$$\begin{aligned} {\omega ^2}= & {} \frac{E}{\rho }\frac{{Numerator}}{{Denomin ator}} = \frac{E}{\rho }\frac{{\frac{{144I}}{{5{L^3}}}\left[ {1 - Q(1 - \chi )} \right] \,}}{{bhL\frac{{104}}{{45}}\left[ {1 - \beta P\frac{{45}}{{104}}} \right] }}\nonumber \\= & {} \frac{E}{\rho }\frac{{\frac{{144\left\{ \nicefrac {bh^{3}}{12}\right\} }}{{5{L^3}}}\left[ {1 - Q(1 - \chi )} \right] \,}}{{bhL\frac{{104}}{{45}}\left[ {1 - \beta P\frac{{45}}{{104}}} \right] }} \end{aligned}$$
(28)

Hence,

$$\begin{aligned}&{\omega ^2} = \frac{E}{\rho } \times \frac{{27}}{{26}} \times \frac{{{h^2}}}{{{L^4}}} \times \frac{{\left[ {1 - Q(1 - \chi )} \right] \,}}{{\left[ {1 - \beta P\frac{{45}}{{104}}} \right] }} \end{aligned}$$
(29)
$$\begin{aligned}&{f_{Hole}} = \frac{1}{{2\pi }} \times \frac{h}{{{L^2}}}\sqrt{\frac{{27E}}{{26\rho }}\frac{{\left[ {1 - Q(1 - \chi )} \right] \,}}{{\left[ {1 - \beta P\frac{{45}}{{104}}} \right] }}} \end{aligned}$$
(30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, P., Kar, S.K. & Mukherjee, B. Performance improvement of low frequency piezoelectric energy harvester incorporating holes with an in-house experimental set-up. Meccanica 56, 59–72 (2021). https://doi.org/10.1007/s11012-020-01279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01279-y

Keywords

Navigation