Skip to main content
Log in

High Rate Deposition in Cold Spray

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Industrialization of cold spray introduces concerns regarding the cost and time efficiency of cold spray procedures. In this work, high rate deposition of tantalum was studied computationally and experimentally. Quasi-1D multiphase fluid simulations predicted minimal effects on the bonding conditions of particles with 5% to 14% increase in powder-to-gas mass flow ratio. Experimental specimens were produced to observe the mechanical and microstructural effects of increased powder stream loading. Adhesion and hardness tests as well as thermal conductivity, optical microscopy, and electron backscatter diffraction examinations only exhibited minor differences in the mechanical and microstructural properties of the specimens. The increased powder stream loading rate, however, allows a significant reduction in the time required for depositing the same amount of tantalum by a factor of three. The results of the study enable shorter cold spray deposition time. This leads to significant cost savings associated with consumption of helium and labor, while facilitating shorter turn-around times for repairing components and manufacturing of cold-sprayed products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Woock, Safeguarding our helium supply, Imaging Economicsed., 2013, p 8

  2. The World Is Constantly Running Out Of Helium. Here’s Why It Matters., (NPR) https://www.npr.org/2019/11/01/775554343/the-world-is-constantly-running-out-of-helium-heres-why-it-matters. (Accessed 18 February 2020 2020)

  3. O.C. Ozdemir, C.A. Widener, M.J. Carter, and K.W. Johnson, Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings, J. Therm. Spray Technol., 2017, 26(7), p 1598-1615

    Article  CAS  Google Scholar 

  4. O. Stier, Fundamental Cost Analysis of Cold Spray, J. Therm. Spray Technol., 2014, 23(1), p 131-139

    Article  Google Scholar 

  5. H. Gabel, Kinetic metallization compared with HVOF. (Tech Spotlight), Adv. Mater. Processes, 2004, 162(5), p 47

    CAS  Google Scholar 

  6. M.C. Meyer, S. Yin, K.A. McDonnell, O. Stier, and R. Lupoi, Feed Rate Effect on Particulate Acceleration in Cold Spray Under Low Stagnation Pressure Conditions, Surf. Coat. Technol., 2016, 304, p 237-245

    Article  CAS  Google Scholar 

  7. K. Taylor, B. Jodoin, J. Karov, Particle Loading Effect in Cold Spray, J. Therm. Spray Technol., 15(2), (2005)

  8. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  CAS  Google Scholar 

  9. T. Schmidt, H. Assadi, F. Gartner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5–6), p 794-808

    Article  Google Scholar 

  10. V. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Limited, Sawston, 2007, p 1-362

    Book  Google Scholar 

  11. A. Moridi, S.M. Hassani-Gangaraj, S. Vezzu, and M. Guagliano, Number of Passes and Thickness Effect on Mechanical Characteristics of Cold Spray Coating, Procedia Eng., 2014, 74, p 449-459

    Article  CAS  Google Scholar 

  12. S. Rech, A. Trentin, S. Vezzù, E. Vedelago, J.-G. Legoux, and E.J.J.O.T.S.T. Irissou, Different Cold Spray Deposition Strategies: Single- and Multi-layers to Repair Aluminium Alloy Components, J Thermal Spray Technol, 2014, 23(8), p 1237-1250

    Article  CAS  Google Scholar 

  13. S.M. Cardonne, P. Kumar, C.A. Michaluk, and H.D. Schwartz, Tantalum and Its Alloys, Int. J. Refract. Met. Hard Mater., 1995, 14, p 187-194

    Article  Google Scholar 

  14. J. Kim, G. Bae, and C. Lee, Characteristics of Kinetic Sprayed Ta in Terms of the Deposition Behavior, Microstructural Evolution and Mechanical Properties: Effect of Strain-Ratedependent Response of Ta at High Temperature, Mater. Charact., 2018, 141, p 49-58

    Article  CAS  Google Scholar 

  15. M.D. Trexler, R. Carter, W.S. De Rosset, D. Gray, D. Helfritch, and V.K. Champagne, Cold Spray Fabrication of Refractory Materials for Gun Barrel Liner Applications, Mater. Manuf. Processes, 2012, 27, p 820-824

    Article  CAS  Google Scholar 

  16. Spotlight on Turbulence: STAR-CCM + v11.06, (Siemens PLM Software) https://steve.cd-adapco.com/articles/en_US/FAQ/Spotlight-on-Turbulence

  17. STAR-CCM + Release Notes v11.06, (Siemens PLM Software) https://steve.cd-adapco.com/. (Accessed 4 Jul 2017 2017)

  18. J.D.J. Anderson, Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill Inc., New York, 1995, p 1-547

    Google Scholar 

  19. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2 ed., John Wiley and Sons, Inc, 2002, p 27, 276, 439

  20. F.R. Menter, Review of the Shear Stress Transport Turbulence Model Experience from an Industrial Perspective, Int. J. Comput. Fluid Dyn., 2009, 23(4), p 305-316

    Article  Google Scholar 

  21. H. Schlichting, Boundary Layer Theory, 7 ed., F.J. Cerra, Ed., McGraw-Hill Book Company, Inc, 1987, p 596–667

  22. J.F. Wendt, Computational Fluid Dynamics: An Introduction, 3rd ed., Springer, Berlin, 2009

    Book  Google Scholar 

  23. S. Martin and J.R. Williams, Multiphase Flow Research, Nova Science Publishers Inc., New York, 2009

    Google Scholar 

  24. J.D. Anderson, Modern Compressible Flow with Historical Perspective, McGraw-Hill Inc., New York, 2012

    Google Scholar 

  25. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    Article  CAS  Google Scholar 

  26. ASTM, Standard Guide for Preparation of Metallogrophic Specimens, ASTM E3, ASTM International 2017

  27. ASTM, Standard Methods for Determining Area Percentage Porosity in Thermally Sprayed Coatings, ASTM E2109 - 01, ASTM International 2014

  28. ImageJ, https://imagej.net/ImageJ. (Accessed 7 Jan 2019 2019)

  29. B. Li, L. Hou, R. Wu, J. Zhang, X. Li, M. Zhang, A. Dong, and B. Sun, Microstructure and Thermal Conductivity of Mg-2Zn-Zr Alloy, J. Alloys Compd., 2017, 722, p 772-777

    Article  CAS  Google Scholar 

  30. E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa, and R. MacKay, Factors Influencing Thermal Conductivity and Mechanical Properties in 319 Al Alloy Cylinder Heads, Mater. Sci. Eng. A, 2015, 648, p 401

    Article  CAS  Google Scholar 

  31. C. Yang, F. Pan, X. Chen, N. Luo, B. Han, and T. Zhou, Thermal Conductivity and Mechanical Properties of Sm-Containing Mg-Zn-Zr Alloys, Mater. Sci. Technol., 2018, 34(2), p 138-144

    Article  CAS  Google Scholar 

  32. D. Seo, K. Ogawa, K. Sakaguchi, N. Miyamoto, and Y. Tsuzuki, Parameter Study Influencing Thermal Conductivity of Annealed Pure Copper Coatings Deposited by Selective Cold Spray Processes, Surf. Coat. Technol., 2012, 206(8–9), p 2316-2324

    Article  CAS  Google Scholar 

  33. S.E. Gustafsson, Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials, Rev. Sci. Instrum., 1991, 62(3), p 797-804

    Article  CAS  Google Scholar 

  34. Hot Disk Thermal Constants Analyser Instruction Manual, Hot Disk, Göteborg, Sweden, 2019

    Google Scholar 

  35. V. Livescu, J.F. Bingert, and T.A. Mason, Deformation Twinning in Explosively-Driven Tantalum, Mater. Sci. Eng. A, 2012, 556, p 155-163

    Article  CAS  Google Scholar 

  36. ASM Handbook Volume 02 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ed., ASM International, 1990

  37. G. Bolelli, B. Bonferroni, H. Koivuluoto, L. Lusvarghi, and P. Vuoristo, Depth-Sensing Indentation for Assessing the Mechanical Properties of Cold-Sprayed Ta, Surf. Coat. Technol., 2010, 205(7), p 2209-2217

    Article  CAS  Google Scholar 

  38. S. Kumar, V. Vidyasagar, A. Jyothirmayi, and S. Joshi, Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings, J. Therm. Spray Technol., 2016, 25(4), p 745-756

    Article  CAS  Google Scholar 

  39. M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, R.H. Hrabe, Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray, J. Therm. Spray Technol., (2017)

  40. C.A. Widener, M.J. Carter, O.C. Ozdemir, R.H. Hrabe, B. Hoiland, T.E. Stamey, V.K. Champagne, and T.J. Eden, Application of High-Pressure Cold Spray for an Internal Bore Repair of a Navy Valve Actuator, J. Therm. Spray Technol., 2016, 25(1–2), p 193-201

    Article  CAS  Google Scholar 

  41. B.L. James, B-1 Cold Spray Initiative, Cold Spray Action Team Meeting, (Worcester, MA, USA, 2016)

Download references

Acknowledgments

This work was sponsored in part by the U.S. Army Research Laboratories under the Grant Number W911NF-15-2-0026. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Government. The authors would like to thank Baillie Haddad and VRC Metal Systems for allowing the use of their microhardness equipment (Webster, MA, USA). The authors would also like to thank Lauren Randaccio and Joel Sanchez (Northeastern University, Boston, MA, USA) for assisting the cold spray experiments, Robert Allegretto (VRC Metal Systems, Rapid City, SD) in thermal conductivity sample preparation, and William Carpenter (South Dakota School of Mines and Technology, Rapid City, SD,) for EBSD sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan C. Ozdemir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Production Notes: ITSC credit line: This article is an invited paper selected from presentations at the 2019 International Thermal Spray Conference, held May 26–29, 2019 in Yokohama, Japan and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, O.C., Schwartz, P., Muftu, S. et al. High Rate Deposition in Cold Spray. J Therm Spray Tech 30, 344–357 (2021). https://doi.org/10.1007/s11666-020-01135-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01135-1

Keywords

Navigation