Skip to main content
Log in

Wetting Behavior of Wear-Resistant WC-Co-Cr Cermet Coatings Produced by HVOF: The Role of Chemical Composition and Surface Roughness

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Despite the existence of several methods for production of superhydrophobic coatings from various materials, their application in harsh environments is still a great challenge. In this work, WC-Co-Cr cermet coatings were prepared by means of high velocity oxy-fuel (HVOF) spraying. WC particles dispersed in Co-Cr metallic matrix allowed to form the multi-scale surface roughness and thus to achieve hydrophobicity of the coatings in the as-sprayed state. The additional surface treatment by the silicone oil rendered the coatings superhydrophobic. The WC-Co-Cr coatings were fabricated from three different powder feedstocks: coarse powder with coarse WC particles, coarse powder with ultrafine WC particles, and fine powder with ultrafine WC particles. The investigation of microstructure, phase composition, and surface topography of produced coatings was conducted to study the influence of these factors on the water contact angle and surface free energy, which were obtained by the sessile droplet method. Theoretical models were used to explain the wetting behavior of all the coatings. Finally, preliminary results of the slurry abrasion response test revealed very good robustness of hydrophobicity of the coatings and also pointed to a need for further research on surface modifications for sacrificial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from (Ref 25)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Yuan and T.R. Lee, Contact Angle and Wetting Properties, Surface Science Techniques Springer Series in Surface Sciences, Vol 51, G. Bracco and B. Holst, Ed., Springer, Berlin, 2013,

    Google Scholar 

  2. A. Lafuma and D. Quéré, Superhydrophobic States, Nat. Mater., 2003, 2, p 457-460. https://doi.org/10.1038/nmat924

    Article  CAS  Google Scholar 

  3. J. Drelich and E. Chibowski, Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control, Langmuir, 2010, 26(24), p 18621-18623. https://doi.org/10.1021/la1039893

    Article  CAS  Google Scholar 

  4. T. Young, An Essay to the Cohesion of Fluids, Philoshopical Trans. R. Soc. London., 1804, 95, p 65-87. https://doi.org/10.1098/rstb.1983.0080

    Article  Google Scholar 

  5. R.N. Wenzel, Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28(8), p 988-994. https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  6. B.D. Cassie, A.B.D. Cassie, and S. Baxter, Of Porous Surfaces, Trans. Faraday Soc., 1944, 40, p 546-551. https://doi.org/10.1039/tf9444000546

    Article  CAS  Google Scholar 

  7. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, The Lowest Surface free Energy Based on -CF3 Alignment, Langmuir, 1999, 15(13), p 4321-4323. https://doi.org/10.1021/la981727s

    Article  CAS  Google Scholar 

  8. Y.Y. Yan, N. Gao, and W. Barthlott, Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces, Adv. Colloid Interface Sci., 2011, 169(2), p 80-105. https://doi.org/10.1016/j.cis.2011.08.005

    Article  CAS  Google Scholar 

  9. L.B. Boinovich and A.M. Emelyanenko, Hydrophobic Materials and Coatings: Principles of Design, Properties and Applications, Russ. Chem. Rev., 2008, 77(7), p 583-600. https://doi.org/10.1070/RC2008v077n07ABEH003775

    Article  CAS  Google Scholar 

  10. J. Drelich, E. Chibowski, D.D. Meng, and K. Terpilowski, Hydrophilic and Superhydrophilic Surfaces and Materials, Soft Matter, 2011, 7, p 9804-9828. https://doi.org/10.1039/c1sm05849e

    Article  CAS  Google Scholar 

  11. J. Genzer and K. Efimenko, Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review, Biofouling, 2006, 22(5), p 339-360. https://doi.org/10.1080/08927010600980223

    Article  CAS  Google Scholar 

  12. K. Liu and L. Jiang, Bio-Inspired Self-Cleaning Surfaces, Annu. Rev. Mater. Res., 2012, 42(1), p 231-263. https://doi.org/10.1146/annurev-matsci-070511-155046

    Article  CAS  Google Scholar 

  13. R. Blossey, Self-Cleaning Surfaces—Virtual Realities, Nat. Mater., 2003, 2, p 301-306. https://doi.org/10.1038/nmat856

    Article  CAS  Google Scholar 

  14. M. Zhang, C. Wang, S. Wang, and J. Li, Fabrication of Superhydrophobic Cotton Textiles for Water–Oil Separation Based on Drop-Coating Route, Carbohydr. Polym., 2013, 97(1), p 59-64. https://doi.org/10.1016/j.carbpol.2012.08.118

    Article  CAS  Google Scholar 

  15. J.B. Boreyko and C.-H. Chen, Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces, Phys. Rev. Lett., 2009, 103(18), p 184501. https://doi.org/10.1103/PhysRevLett.103.184501

    Article  CAS  Google Scholar 

  16. K.M. Wisdom, J.A. Watson, X. Qu, F. Liu, G.S. Watson, and C.-H. Chen, Self-Cleaning of Superhydrophobic Surfaces by Self-Propelled Jumping Condensate, Proc. Natl. Acad. Sci., 2013, 110(20), p 7992-7997. https://doi.org/10.1073/pnas.1210770110

    Article  Google Scholar 

  17. H. Koivuluoto, E. Hartikainen, and H. Niemela-Anttonen, Thermally Sprayed Coatings: Novel Surface Enrgineering Strategy Towards Icephobic Solutions, Materials, 2020, 13(6), p 1434. https://doi.org/10.3390/ma13061434

    Article  CAS  Google Scholar 

  18. H. Sojoudi, M. Wang, N.D. Boscher, G.H. McKinley, and K.K. Gleason, Durable and Scalable Icephobic Surfaces: Similarities and Distinctions From Superhydrophobic Surfaces, Soft Matter, 2016, 12, p 1938-1963. https://doi.org/10.1039/C5SM02295A

    Article  CAS  Google Scholar 

  19. Q. Xu, J. Li, J. Tian, J. Zhu, and X. Gao, Energy-Effective Frost-Free Coatings Based on Superhydrophobic Aligned Nanocones, ACS Appl. Mater. Interfaces., 2014, 6(12), p 8976-8980. https://doi.org/10.1021/am502607e

    Article  CAS  Google Scholar 

  20. T. Moriya, K. Manabe, M. Tenjimbayashi, K. Suwabe, H. Tsuchiya, T. Matsubayashi, W. Navarrini, and S. Shiratori, A Superrepellent Coating with Dynamic Fluorine Chains for Frosting Suppression: Effects of Polarity, Coalescence and Ice Nucleation Free Energy Barrier, RSC Adv., 2016, 6, p 92197-92205. https://doi.org/10.1039/C6RA18483A

    Article  CAS  Google Scholar 

  21. Gh Barati Darband, M. Aliofjhazraei, S. Khorsand, S. Sokhanvar, and A. Kaboli, Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability, Arab. J. Chem., 2020, 13(1), p 1763-1802. https://doi.org/10.1016/j.arabjc.2018.01.013

    Article  CAS  Google Scholar 

  22. C. Lee and C.-J. Kim, Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction, Phys. Rev. Lett., 2011, 106(1), p 014502. https://doi.org/10.1103/PhysRevLett.106.014502

    Article  CAS  Google Scholar 

  23. A.M. Emelyanenko, F.M. Shagieva, A.G. Domantovsky, and L.B. Boinovich, Nanosecond laser Micro- and Nanotexturing for the Design of a Superhydrophobic Coating Robust Against Long-Term Contact With Water, Cavitation, and Abrasion, Appl. Surf. Sci., 2015, 332, p 513-517. https://doi.org/10.1016/j.apsusc.2015.01.202

    Article  CAS  Google Scholar 

  24. Y. Tian and L. Jiang, Intrinsically Robust Hydrophobicity, Nat. Mater., 2013, 12, p 291-292. https://doi.org/10.1038/nmat3610

    Article  CAS  Google Scholar 

  25. P. Komarov, L. Čelko, M. Remešová, K. Skorokhod, D. Jech, L. Klakurková, K. Slámečka and R. Mušálek, The role of microstructure on wettability of plasma sprayed yttria stabilized zirconia coatings, in: Met. 2017 - 26th Int. Conf. Metall. Mater., TANGER Ltd, 2017: pp. 1116–1121.

  26. K. Koch, B. Bhushan, Y.C. Jung, and W. Barthlott, Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure For Superhydrophobicity and Low Adhesion, Soft Matter, 2009, 5, p 1386. https://doi.org/10.1039/b818940d

    Article  CAS  Google Scholar 

  27. T. Verho, C. Bower, P. Andrew, S. Franssila, O. Ikkala, and R.H.A. Ras, Mechanically Durable Superhydrophobic Surfaces, Adv. Mater., 2011, 23(5), p 673-678. https://doi.org/10.1002/adma.201003129

    Article  CAS  Google Scholar 

  28. N. Sharifi, M. Pugh, C. Moreau, and A. Dolatabadi, Developing Hydrophobic and Superhydrophobic TiO2 Coatings by Plasma Spraying, Surf. Coat. Technol., 2016, 289, p 29-36. https://doi.org/10.1016/j.surfcoat.2016.01.029

    Article  CAS  Google Scholar 

  29. L. Hu, X. Song, D. Jin, C. Xing, X. Shan, X. Zhao, F. Guo, and P. Xiao, A Robust Quasi-Superhydrophobic Ceria Coating Prepared Using Air-Plasma Spraying, J. Am. Ceram. Soc., 2019, 102(3), p 1386-1393. https://doi.org/10.1111/jace.16005

    Article  CAS  Google Scholar 

  30. P. Xu, T.W. Coyle, L. Pershin, and J. Mostaghimi, Fabrication of Micro-/Nano-Structured Superhydrophobic Ceramic Coating with Reversible Wettability Via A Novel Solution Precursor Vacuum Plasma Spray Process, Mater. Des., 2018, 160, p 974-984. https://doi.org/10.1016/j.matdes.2018.10.015

    Article  CAS  Google Scholar 

  31. P. Xu, T.W. Coyle, L. Pershin, and J. Mostaghimi, Understanding the Correlations Between the Mechanical Robustness, Coating Structures and Surface Composition for Highly-/Super-Hydrophobic Ceramic Coatings, Surf. Coat. Technol., 2019, 378, p 124929. https://doi.org/10.1016/j.surfcoat.2019.124929

    Article  CAS  Google Scholar 

  32. N. Xi, Y. Liu, X. Zhang, N. Liu, H. Fu, Z. Hang, G. Yang, H. Chen, and W. Gao, Steady Anti-Icing Coatings on Weathering Steel Fabricated by HVOF Spraying, Appl. Surf. Sci., 2018, 444, p 757-762. https://doi.org/10.1016/j.apsusc.2018.03.075

    Article  CAS  Google Scholar 

  33. J. Qiao, L. Na Zhu, W. Yue, Z. Qiang Fu, J. Jie Kang, and C. Biao Wang, The Effect of Attributes of Micro-Shapes of Laser Surface Texture on the Wettability of WC-CrCo Metal Ceramic Coatings, Surf. Coat. Technol., 2018, 334, p 429-437. https://doi.org/10.1016/j.surfcoat.2017.12.001

    Article  CAS  Google Scholar 

  34. S. Vijay, L. Wang, C. Lyphout, P. Nylen, and N. Markocsan, Surface Characteristics Investigation of HVAF Sprayed Cermet Coatings, Appl. Surf. Sci., 2019, 493, p 956-962. https://doi.org/10.1016/j.apsusc.2019.07.079

    Article  CAS  Google Scholar 

  35. P. Komarov, L. Čelko, D. Jech, M. Papula, K. Slámečka, M. Horynová, L. Klakurková, and J. Kaiser, Investigations of Wettability of Wear Resistant Coatings Produced by Atmospheric Plasma Spraying, Solid State Phenom., 2017, 270, p 230-235. https://doi.org/10.4028/www.scientific.net/SSP.270.230

    Article  Google Scholar 

  36. J. Pulsford, S. Kamnis, J. Murray, M. Bai, and T. Hussain, Effect of Particle and Carbide Grain Sizes on a HVOAF WC-Co-Cr Coating for the Future Application on Internal Surfaces: Microstructure and Wear, J. Therm. Spray Technol., 2018, 27, p 207-219. https://doi.org/10.1007/s11666-017-0669-8

    Article  CAS  Google Scholar 

  37. H. Wang, M. Gee, Q. Qiu, H. Zhang, X. Liu, H. Nie, X. Song, and Z. Nie, Grain size Effect on Wear Resistance of WC-Co Cemented Carbides Under Different Tribological Conditions, J. Mat. Sci. Tech., 2019, 35, p 2435-2446. https://doi.org/10.1016/j.jmst.2019.07.016

    Article  Google Scholar 

  38. J.M. Guilemany, S. Dosta, and J.R. Miguel, The Enhancement of the Properties of WC-Co HVOF Coatings Through the Use of Nanostructured and Microstructured Feedstock Powders, Surf. Coat. Technol., 2006, 201(3–4), p 1180-1190. https://doi.org/10.1016/j.surfcoat.2006.01.041

    Article  CAS  Google Scholar 

  39. A. Lekatou, D. Sioulas, A.E. Karantzalis, and D. Grimanelis, A Comparative Study on the Microstructure and Surface Property Evaluation of Coatings Produced from Nanostructured and Conventional WC-Co Powders HVOF-Sprayed on Al7075, Surf. Coat. Technol., 2015, 276, p 539-556. https://doi.org/10.1016/j.surfcoat.2015.06.017

    Article  CAS  Google Scholar 

  40. B. Yin, H.D. Zhou, D.L. Yi, J.M. Chen, and F.Y. Yan, Microsliding Wear Behaviour of HVOF Sprayed Conventional and Nanostructured WC-12Co Coatings at Elevated Temperatures, Surf. Eng., 2013, 26(6), p 469-477. https://doi.org/10.1179/026708410X12506870724352

    Article  CAS  Google Scholar 

  41. A. Larson, R. Dreele, General Structure Analysis System (GSAS). LAUR 86–748. https://doi.org/10.https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf, 2004 (accessed 31 July 2020).

  42. J.A.R. Wesmann and N. Espallargas, Elucidating the Complex Role of Surface Oxides Formed During Sliding of self0mated Warm Sprayed WC-CoCr in Different Environments, Trib. Int., 2016, 94, p 360-372. https://doi.org/10.1016/j.triboint.2015.09.043

    Article  CAS  Google Scholar 

  43. J.A.R. Wesmann, S. Kuroda, and N. Espallargas, The Role of Oxide Tribofilms on Friction and Wear of Different Thermally Sprayed WC-CoCr, J. Therm. Spray Technol., 2017, 26, p 492-502. https://doi.org/10.1007/s11666-017-0522-0

    Article  CAS  Google Scholar 

  44. L.-N. Zhang, Y.-Y. Ma, Z.-L. Lang, Y.-H. Wang, S.U. Khan, G. Yan, H.-Q. Tan, H.-Y. Zang, and Y.-G. Li, Ultrafine Cable-Like WC/W2C Heterojunction Nanowires Covered by Graphitic Carbon Towards Highly Efficient Electrocatalytic Hydrogen Evolution, J. Mater. Chem. A, 2018, 6, p 15395-15403. https://doi.org/10.1039/C8TA05007D

    Article  CAS  Google Scholar 

  45. J.A. Picas, M. Punset, E. Ruperez, S. Menargues, E. Martin, and M.T. Baile, Corrosion Mechanism of HVOF Thermal Sprayed WC-CoCr Coatings in Acidic Chloride Media, Surf. Coat. Technol., 2019, 371, p 378-388. https://doi.org/10.1016/j.surfcoat.2018.10.025

    Article  CAS  Google Scholar 

  46. Z. Chen, W. Gong, S. Cong, Z. Wang, G. Song, T. Pan, X. Tang, J. Chen, W. Lu, and Z. Zhao, Eutectoid-Structured WC/W2C Heterostructures: A New Platform for Long-Term Alkaline Hydrogen Evolution Reaction at Low Overpotentials, Nano Energy, 2020, 68, p 104335. https://doi.org/10.1016/j.nanoen.2019.104335

    Article  CAS  Google Scholar 

  47. ISO 25178 part 2, Geometrical Product Specification (GPS) - Surface Texture: Areal - Part 2: Terms, Definitions and Surface Texture Parameters, International Organization for Standartization, 2012.

  48. K. Slámečka, D. Jech, L. Klakurková, S. Tkachenko, M. Remešová, P. Gejdoš, and L. Čelko, Thermal Cycling Damage in Pre-Oxidized Plasma-Sprayed MCrAlY + YSZ Thermal Barrier Coatings: Phenomenon Of Multiple Parallel Delamination of the TGO Layer, Surf. Coat. Technol., 2020, 384, p 125328. https://doi.org/10.1016/j.surfcoat.2019.125328

    Article  CAS  Google Scholar 

  49. D.K. Owens and R.C. Wendt, Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci., 1969, 13(8), p 1741-1747. https://doi.org/10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  50. J.M. Schuster, C.E. Schvezov, and M.R. Rosenberger, Analysis of the Results of Surface Free Energy Measurement of Ti6Al4V by Different Methods, Procedia Mater. Sci., 2015, 8, p 732-741. https://doi.org/10.1016/j.mspro.2015.04.130

    Article  CAS  Google Scholar 

  51. G75-15 Standard Test Method for Determination of Slurry Abrasivity (Miller Number) and Slurry Abrasion Response of Materials (SAR Number), ASTM International, 2015. https://doi.org/10.1520/G0075-15

  52. S. Al-Mutairi, M.S.J. Hashmi, B.S. Yilbas, and J. Stokes, Microstructural Characterization of HVOF/plasma Thermal Spray of Micro/Nano WC-12%Co powders, Surf. Coat. Technol., 2015, 264, p 175-186. https://doi.org/10.1016/j.surfcoat.2014.12.050

    Article  CAS  Google Scholar 

  53. Q. Yang, T. Senda, and A. Ohmori, Effect of Carbide Grain Size on Microstructure and Sliding Wear Behavior of HVOF-Sprayed WC–12% Co Coatings, Wear, 2003, 254(1–2), p 23-34. https://doi.org/10.1016/S0043-1648(02)00294-6

    Article  CAS  Google Scholar 

  54. M. Li and P.D. Christofides, Computational Study of Particle in-Flight Behavior in the HVOF Thermal Spray Process, Chem. Eng. Sci., 2006, 61(19), p 6540-6552. https://doi.org/10.1016/j.ces.2006.05.050

    Article  CAS  Google Scholar 

  55. C.J. Li, A. Ohmori, and Y. Harada, Formation of an Amorphous Phase in Thermally Sprayed WC-Co, J. Therm. Spray Technol., 1996, 5, p 69-73. https://doi.org/10.1007/BF02647520

    Article  CAS  Google Scholar 

  56. M. Federici, C. Menapace, A. Moscatelli, S. Gialanella, and G. Straffelini, Pin-on-Disc Study of a Friction Material Dry Sliding Against HVOF Coated Discs at Room Temperature and 300°C, Tribol. Int., 2017, 115, p 89-99. https://doi.org/10.1016/j.triboint.2017.05.030

    Article  Google Scholar 

  57. S.M. Nahvi and M. Jafari, Microstructural and Mechanical Properties of Advanced HVOF-Sprayed WC-Based Cermet Coatings, Surf. Coat. Technol., 2016, 286, p 95-102. https://doi.org/10.1016/j.surfcoat.2015.12.016

    Article  CAS  Google Scholar 

  58. X. Ding, X.D. Cheng, C. Li, X. Yu, Z.X. Ding, and C.Q. Yuan, Microstructure and Performance of Multi-Dimensional WC-CoCr Coating Sprayed by HVOF, Int. J. Adv. Manuf. Technol., 2018, 96, p 1625-1633. https://doi.org/10.1007/s00170-017-0837-5

    Article  Google Scholar 

  59. R. Vaßen, G. Kerhoff, D. Stöver, Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings, Mat. Sci. and Eng.:A, 303 (1-2), p 100-109. https://doi.org/10.1016/S0921-5093(00)01853-0

  60. W. Tillmann, L. Hagen, D. Stangier, M. Krabiell, P. Schröder, J. Tiller, C. Krumm, C. Sternemann, M. Paulus, and M. Elbers, Influence of Etching-Pretreatment on Nano-Grained WC-Co Surfaces and Properties of PVD/HVOF Duplex Coatings, Surf. Coat. Technol., 2019, 374, p 32-43. https://doi.org/10.1016/j.surfcoat.2019.05.054

    Article  CAS  Google Scholar 

  61. P. Xu, G. Meng, L. Pershin, J. Mostaghimi, and T.W. Coyle, Control of the Hydrophobicity of Rare Earth Oxide Coatings Deposited by Solution Precursor Plasma Spray by Hydrocarbon Adsorption, J. Mat. Sci. Tech., 2021, 62, p 107-118. https://doi.org/10.1016/j.jmst.2020.04.044

    Article  Google Scholar 

  62. J. Li, C. Li, G. Yan, and C. Li, Wettability Transition on Micro-Nano Hierarchical Structured Ni20Cr Coating Surface by Selective Spontaneous Adsorption During Vacuum Evacuation, Mater. Chem. Phys., 2018, 219, p 292-302. https://doi.org/10.1016/j.matchemphys.2018.08.049

    Article  CAS  Google Scholar 

  63. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, On the Aging of Oxygen Plasma-Treated Polydimethylsiloxane Surfaces, J. Colloid Interface Sci., 1990, 137(1), p 11-24. https://doi.org/10.1016/0021-9797(90)90038-P

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was made in the frame of the Specific Research Project CEITEC VUT-J-19-5799 awarded at the Central European Institute of Technology – Brno University of Technology. We acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110). The help of Ing. Subhash Gupta within the XPS analysis is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Komarov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 2679 kb)

Supplementary material 2 (MP4 1001 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, P., Jech, D., Tkachenko, S. et al. Wetting Behavior of Wear-Resistant WC-Co-Cr Cermet Coatings Produced by HVOF: The Role of Chemical Composition and Surface Roughness. J Therm Spray Tech 30, 285–303 (2021). https://doi.org/10.1007/s11666-020-01130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01130-6

Keywords

Navigation