Skip to main content
Log in

Quantitative Characterization of Carbide Loss and Correlation with Microstructure and Performance of Plasma-Sprayed NiCr-Cr3C2 Metal Carbide Coatings

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The aim of this work is to quantitatively describe the carbide loss during plasma deposition of metal carbide coatings and link it to the microstructure and performance of the as-sprayed coatings. To do this, a carbide loss index is defined. The results suggest that the microstructure and performance of such coatings can be tailored by controlling the content of carbides based on the proposed carbide loss index. The size of the particles in flight had the most significant effect on the carbide loss during the processing of the powder in the plasma jet. When the carbide loss index decreased from 0.028 to 0.014, the carbide content in the NiCr-Cr3C2 coating increased from 23.18 to 34.43 vol.%, effectively improving the microhardness of the coating and eliminating the formation of cluster cracks between the carbides and metal binder. In ball-on-disk friction testing with a Si3N4 ball, the coating with the highest content of carbides showed the lowest friction coefficient and best tribological properties. This study provides in-depth understanding of the nature of carbide loss and the factors that affect it under plasma spray conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.M. Yuan, T.S. Dong, B.G. Fu, G.L. Li, L. Liu, and R. Wang, Effect of Tungsten Inert Gas Arc Remelting on Microstructure and Wear Properties of Plasma-Sprayed NiCr-Cr3C2 Coating, J. Mater. Eng. Perform., 2019, 28, p 6320-6329

    Article  CAS  Google Scholar 

  2. L. Janka, J. Norpoth, R. Trache, and L.M. Berger, Influence of Heat Treatment on the Abrasive Wear Resistance of a Cr3C2-NiCr Coating Deposited by an Ethene-Fuelled HVOF Spray Process, Surf. Coat. Technol., 2016, 291, p 444-451

    Article  CAS  Google Scholar 

  3. L. Lin, G.L. Li, H.D. Wang, J.J. Kang, Z.L. Xu, and H.J. Wang, Structure and Wear Behavior of NiCr-Cr3C2 Coatings Sprayed by Supersonic Plasma Spraying and High Velocity Oxy-Fuel Technologies, Appl. Surf. Sci., 2015, 356, p 383-390

    Article  CAS  Google Scholar 

  4. S. Matthews, Development of High Carbide Dissolution/Low Carbon Loss Cr3C2-NiCr Coatings by Shrouded Plasma Spraying, Surf. Coat. Technol., 2014, 258, p 886-900

    Article  CAS  Google Scholar 

  5. Y.X. Cao, Effects of hBN Content on the Microstructure and Properties of Atmospheric Plasma-Sprayed NiCr/Cr3C2-hBN Composite Coatings, J. Therm. Spray Technol., 2016, 25(4), p 650-659

    Article  CAS  Google Scholar 

  6. H.B. Wang, H. Li, H.B. Zhu, F.J. Cheng, D.P. Wang, and Z.X. Li, A Comparative Study of Plasma Sprayed TiB2-NiCr and Cr3C2-NiCr Composite Coatings, Mater. Lett., 2015, 153, p 110-113

    Article  CAS  Google Scholar 

  7. S. Matthews, A. Asadov, S. Ruddell, and L.M. Berger, Thermally Induced Metallurgical Processes in Cr3C2-NiCr Thermal Spray Coatings as a Function of Carbide Dissolution, J. Alloys Compd., 2017, 728, p 445-463

    Article  CAS  Google Scholar 

  8. A.S.M. Ang, H. Howse, S.A. Wade, and C.C. Berndt, Development of Processing Windows for HVOF Carbide-Based Coatings, J. Therm. Spray Technol., 2016, 25, p 28-35

    Article  CAS  Google Scholar 

  9. G. Bolelli, B. Bonferroni, J. Laurila, L. Lusvarghi, A. Milanti, K. Niemi, and P. Vuoristo, Micromechanical Properties and Sliding Wear Behaviour of HVOF-Sprayed Fe-Based Alloy Coatings, Wear, 2012, 276–277, p 29-47

    Article  Google Scholar 

  10. N. Vashishtha, R.K. Khatirkar, and S.G. Sapate, Tribological Behaviour of HVOF Sprayed WC-12Co, WC-10Co-4Cr and Cr3C2-25NiCr Coatings, Tribol. Int., 2017, 105, p 55-68

    Article  CAS  Google Scholar 

  11. H.H. Xi, P.F. He, H.D. Wang, M. Liu, S.Y. Chen, Z.G. Xing, G.Z. Ma, and Z.L. Lv, Microstructure and Mechanical Properties of Mo Coating Deposited by Supersonic Plasma Spraying, Int. J. Refract. Met. Hard Mater., 2020, 86, p 105095

    Article  CAS  Google Scholar 

  12. Q.Y. Hou, X.Y. Ma, R.C. Lu, W. Wang, P. Wang, and Z.Y. Huang, Microstructure and Laser Irradiation Characteristics of TiC-Free and TiC-Doped Tungsten-Based Coatings Prepared by Supersonic Atmospheric Plasma Spraying, Surf. Coat. Technol., 2019, 358, p 796-805

    Article  CAS  Google Scholar 

  13. Q.Y. Hou, H.Q. Huang, D.H. Zhou, P. Wang, Q. Xie, and Z.Y. Huang, Influence of NbC-Doping on the Microstructure and Thermo-Mechanical Properties of Tungsten Coating Fabricated by Supersonic Atmospheric Plasma Spraying, Surf. Coat. Technol., 2020, 394, p 125823

    Article  CAS  Google Scholar 

  14. Y. Bai, L. Zhao, Y. Wang, D. Chen, B.Q. Li, and Z.H. Han, Fragmentation of In-Flight Particles and Its Influence on the Microstructure and Mechanical Property of YSZ Coating Deposited by Supersonic Atmospheric Plasma Spraying, J. Alloys Compd., 2015, 632, p 794-799

    Article  CAS  Google Scholar 

  15. F. Herbstein and J. Snyman, Identification of Eckstrom-Adcock Iron Carbide as Fe7C3, Inorg. Chem., 1964, 3, p 894-896

    Article  CAS  Google Scholar 

  16. A. Bowman, G. Arnold, E. Storms, and N. Nereson, The Crystal Structure of Cr23C6, Acta Crystallogr. B, 1972, 28, p 3102-3103

    Article  CAS  Google Scholar 

  17. D.A. Stewart, P.H. Shipway, and D.G. McCartney, Microstructural Evolution in Thermally Sprayed WC-Co Coatings: Comparison Between Nanocomposite and Conventional Starting Powders, Acta Mater., 2000, 48, p 1593-1604

    Article  CAS  Google Scholar 

  18. J.H. He and E.J. Lavernia, Precipitation Phenomenon in Nanostructured Cr3C2-NiCr Coatings, Mater. Sci. Eng. A, 2001, 301, p 69-79

    Article  Google Scholar 

  19. J. Wang, K. Li, D. Shu, X. He, B.D. Sun, Q.X. Guo, M. Nishio, and H. Ogawa, Effects of Structure and Processing Technique on the Properties of Thermal Spray WC-Co and NiCrAl/WC-Co Coatings, Mater. Sci. Eng. A, 2004, 371, p 187-192

    Article  Google Scholar 

  20. S. Matthews and L.M. Berger, Inter-Diffusion Between Thermally Sprayed Cr3C2-NiCr Coatings and an Alloy 625 Substrate during Long-Term Exposure at 500°C, 700°C and 900°C, J. Alloys Compd., 2017, 770, p 1078-1099

    Article  Google Scholar 

  21. Q. Liu, Y. Bai, H.D. Wang, G.Z. Ma, M. Liu, C.Y. Chu, Y.W. Sun, W. Fan, F. Ding, B. Zhao, and Y.T. Wang, Microstructural Evolution of Carbides and Its Effect on Tribological Properties of SAPS or HVOF Sprayed NiCr–Cr3C2 Coatings, J. Alloys Compd., 2019, 803, p 730-741

    Article  CAS  Google Scholar 

  22. V. Matikainen, G. Bolelli, H. Koivuluoto, P. Sassatelli, L. Lusvarghi, and P. Vuoristo, Sliding Wear Behaviour of HVOF and HVAF Sprayed Cr3C2-Based Coatings, Wear, 2017, 388–389, p 57-71

    Article  Google Scholar 

  23. C.J. Li, G.C. Ji, Y.Y. Wang, and K. Sonoya, Dominant Effect of Carbide Rebounding on the Carbon Loss During High Velocity Oxy-Fuel Spraying of Cr3C2-NiCr, Thin Solid Films, 2002, 419, p 137-143

    Article  CAS  Google Scholar 

  24. G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, V. Matikainen, L. Lusvarghi, C. Lyphout, N. Markocsan, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Sliding and Abrasive Wear Behaviour of HVOF- and HVAF-Sprayed Cr3C2-NiCr Hardmetal Coatings, Wear, 2016, 358–359, p 32-50

    Article  Google Scholar 

  25. K. Liu, J.J. Tang, Y. Bai, Q.Z. Yang, Y. Wang, Y.X. Kang, L. Zhao, P. Zhang, and Z.H. Han, Particle In-Flight Behavior and Its Influence on the Microstructure and Mechanical Property of Plasma Sprayed La2Ce2O7 Thermal Barrier Coatings, Mater. Sci. Eng. A, 2015, 625, p 177-185

    Article  CAS  Google Scholar 

  26. L.Z. Du, C.B. Huang, W.G. Zhang, T.G. Li, and W. Liu, Preparation and Wear Performance of NiCr/Cr3C2-NiCr/hBN Plasma Sprayed Composite Coating, Surf. Coat. Technol., 2011, 205, p 3722-3728

    Article  CAS  Google Scholar 

  27. E. Gariboldi, L. Rovatti, N. Lecis, L. Mondora, and G.A. Mondora, Tribological and Mechanical Behaviour of Cr3C2-NiCr Thermally Sprayed Coatings after Prolonged Aging, Surf. Coat. Technol., 2016, 305, p 83-92

    Article  CAS  Google Scholar 

  28. L.M. Berger, Application of Hardmetals as Thermal Spray Coatings, Int. J. Refract. Metals Hard Mater., 2015, 49, p 350-364

    Article  CAS  Google Scholar 

  29. E.L. Cantera and B. Mellor, Fracture Toughness and Crack Morphologies in Eroded WC-Co-Cr Thermally Sprayed Coatings, Mater. Lett., 1998, 37, p 201-210

    Article  CAS  Google Scholar 

  30. A.L. Robertson and K.W. White, Microscale Fracture Mechanisms of a Cr3C2-NiCr HVOF Coating, Mater. Sci. Eng. A, 2017, 688, p 62-69

    Article  CAS  Google Scholar 

  31. S. Matthews, B. James, and M. Hyland, Microstructural Influence on Erosion Behavior of Thermal Spray Coatings, Mater. Charact., 2007, 58, p 59-64

    Article  Google Scholar 

  32. Y. Wang, Y. Bai, K. Wu, J. Zhou, M.G. Shen, W. Fan, H.Y. Chen, Y.X. Kang, and B.Q. Li, Flattening and Solidification Behavior of In-Flight Droplets in Plasma Spraying and Micro/Macro-Bonding Mechanisms, J. Alloys Compd., 2019, 784, p 834-846

    Article  CAS  Google Scholar 

  33. S. Matthews, Compositional Development as a Function of Spray Distance in Unshrouded/Shrouded Plasma Sprayed Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2014, 24, p 515-533

    Article  Google Scholar 

  34. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, In-flight Oxidation of High-Alloy Steels During Plasma Spraying, Surf. Coat. Technol., 2001, 146–147, p 48-54

    Article  Google Scholar 

  35. F. Otsubo, H. Era, T. Uchida, and K. Kishitake, Properties of Cr3C2-NiCr Cermet Coating Sprayed by High Power Plasma and High Velocity Oxy-Fuel Processes, J. Therm. Spray Technol., 2000, 9(4), p 499-504

    Article  CAS  Google Scholar 

  36. O.M. Cintho, E.A.P. Favilla, and J.D.T. Capocchi, Mechanical-Thermal Synthesis of Chromium Carbides, J. Alloys Compd., 2007, 439, p 189-195

    Article  CAS  Google Scholar 

  37. T. Wang, G. Zhang, and B. Jiang, Comparison in Mechanical and Tribological Properties of CrTiAlMoN and CrTiAlN Nano-Multilayer Coatings Deposited by Magnetron Sputtering, Appl. Surf. Sci., 2016, 363, p 217-224

    Article  CAS  Google Scholar 

  38. H.B. Xiong, L.L. Zheng, L. Li, and A. Vaidya, Melting and Oxidation Behavior of In-flight Particles in Plasma Spray Process, Int. J. Heat Mass Transf., 2005, 48, p 5121-5133

    Article  CAS  Google Scholar 

  39. C.J. Li, Y.Y. Wang, G.J. Yang, A. Ohmori, and K.A. Khor, Effect of Solid Carbide Particle Size on Deposition Behaviour, Microstructure and Wear Performance of HVOF Cermet Coatings, Mater. Sci. Technol., 2004, 20, p 1087-1096

    Article  CAS  Google Scholar 

  40. P. Marini and G. Abbruzzese, Decarburization Rate Related to Surface Oxidation of Grain Oriented Silicon Steel, J. Magn. Magn. Mater., 1982, 26, p 15-21

    Article  CAS  Google Scholar 

  41. W.J. Quadakkers, R. Schulten, K. Bongartz, and H. Nickel, Mathematical Modeling for Carbon Diffusion and Carbide Precipitation in NiCr-Based Alloys, Key Eng. Mater., 1991, 20–28, p 1737-1746

    Article  Google Scholar 

  42. E. Mayrhofer, L. Janka, W.P. Mayr, J. Norpoth, M.P. Ripoll, and M. Gröschl, Cracking Resistance of Cr3C2-NiCr and WC-Cr3C2-Ni Thermally Sprayed Coatings under Tensile Bending Stress, Surf. Coat. Technol., 2015, 281, p 169-175

    Article  CAS  Google Scholar 

  43. K. Bobzin, L. Zhao, M. Öte, T. Königstein, and M. Steeger, Impact Wear of an HVOF-Sprayed Cr3C2-NiCr Coating, Int. J. Refract. Met. Hard Mater., 2018, 70, p 191-196

    Article  CAS  Google Scholar 

  44. S. Hong, Y.P. Wu, B. Wang, Y.G. Zheng, W.W. Gao, and G.Y. Li, High-Velocity Oxygen-Fuel Spray Parameter Optimization of Nanostructured WC-10Co-4Cr Coatings and Sliding Wear Behavior of the Optimized Coating, Mater. Des., 2014, 55, p 286-291

    Article  CAS  Google Scholar 

  45. W.L. Chen, T.J. Mao, B.Y. Zhang, S.H. Zhang, and X.N. Meng, Designs and Preparation of Advanced HVOF-PVD Duplex Coating by Combination of HVOF and Arc Ion Plating, Surf. Coat. Technol., 2016, 304, p 125-133

    Article  CAS  Google Scholar 

  46. J.K.N. Murthy and B. Venkataraman, Abrasive Wear Behavior of WC-CoCr and Cr3C2-20 (NiCr) Deposited by HVOF and Detonation Spray Processes, Surf. Coat. Technol., 2006, 200, p 2642-2652

    Article  CAS  Google Scholar 

  47. M.A. Zavareh, A.A.D.M. Sarhan, B.B. Razak, and W.J. Basirun, The Tribological and Electrochemical Behavior of HVOF-Sprayed Cr3C2-NiCr Ceramic Coating on Carbon Steel, Ceram. Int., 2015, 41, p 5387-5396

    Article  Google Scholar 

  48. T. Varis, T. Suhonen, O. Calonius, J. Čuban, and M. Pietola, Optimization of HVOF Cr3C2-NiCr Coating for Increased Fatigue Performance, Surf. Coat. Technol., 2016, 305, p 123-131

    Article  CAS  Google Scholar 

  49. M. Krauss, D. Bergmann, U. Fritsching, and K. Bauckhage, In-situ Particle Temperature, Velocity and Size Measurements in the Spray Forming Process, Mater. Sci. Eng. A, 2002, 326, p 154-164

    Article  Google Scholar 

  50. M. Friis, P. Nylén, C. Persson, and J. Wigren, Investigation of Particle In-flight Characteristics During Atmospheric Plasma Spraying of Yttria-Stabilized ZrO2: Part. 1 Experimental, J. Therm. Spray Technol., 2001, 10, p 301-310

    Article  CAS  Google Scholar 

  51. Y. Bai, L. Zhao, Y.M. Qu, Q.Q. Fu, Y. Wang, K. Liu, J.J. Tang, B.Q. Li, and Z.H. Han, Particle In-flight Behavior and Its Influence on the Microstructure and Properties of Supersonic-Atmospheric-Plasma-Sprayed Nanostructured Thermal Barrier Coatings, J. Alloys Compd., 2015, 644, p 873-882

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Key R&D Program of China (Grant No. 2018YFB2004004), Collaborative Innovation Center of Advanced Control Valve Project (Grant No. WZYB-XTCX-001), National Natural Science Foundation of China (Grant No. 52005388), China Postdoctoral Science Foundation (Grant No. 2019M653598), and Natural Science Foundation of Shaanxi Province (Grant Nos. 2019TD-020 and 2019JQ-586).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Bai or G. Z. Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Hu, Y.B., Chong, N.J. et al. Quantitative Characterization of Carbide Loss and Correlation with Microstructure and Performance of Plasma-Sprayed NiCr-Cr3C2 Metal Carbide Coatings. J Therm Spray Tech 30, 457–470 (2021). https://doi.org/10.1007/s11666-020-01136-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01136-0

Keywords

Navigation