Skip to main content
Log in

Fabrication of DNA/poly l-methionine-silver nanoparticles/pencil graphite electrode and its application to the determination of carboxin

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, a novel electrochemical biosensor is reported for carboxin detection based on the fabrication of the deoxyribonucleic acid/poly l-methionine-silver nanoparticles/pencil graphite electrode (DNA/PMT-AgNPs/PGE). The electrochemical response of carboxin on the DNA/PMT-AgNPs/PGE was measured using adsorptive differential pulse voltammetry (AdDPV). The electrochemical impedance spectroscopy studies showed lower Rct values for PMT-AgNPs/PGE and DNA/PMT-AgNPs/PGE compared to PGE, demonstrating their good conductivity and faster electron transfer rate. Also, the interaction of DNA with carboxin led to the better accumulation of carboxin on the electrode surface. The proposed biosensor afforded excellent selectivity for carboxin against other pesticides. According to the findings, the DNA/PMT-AgNPs/PGE presents a linear response over the carboxin concentration ranges from 8.0 pM to 1.0 µM. The detection limit was obtained as 5.0 pM under the optimized conditions. The applied DNA/PMT-AgNPs/PGE could successfully detect carboxin in the tap and river water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.R. Dalvi, D.K. Salunkhe, Toxicological implications of pesticides: their toxic effects on seeds of food plants. Toxicology 3, 269–285 (1975)

    CAS  PubMed  Google Scholar 

  2. A. Juan-García, J. Manes, G. Font, Y. Picó, Evaluation of solid-phase extraction and stir-bar sorptive extraction for the determination of fungicide residues at low-μg kg−1 levels in grapes by liquid chromatography-mass spectrometry. J. Chromatogr. A 1050, 119–127 (2004)

    PubMed  Google Scholar 

  3. K. Meylan, H. Wichmann, The detection of apron-plus constituents in seawater. Lebensmittelchemie 48, 73 (1994)

    Google Scholar 

  4. K. Pike, G. Reed, G. Graf, D. Allison, Compatibility of imidacloprid with fungicides as a seed-treatment control of Russian wheat aphid (homoptera: aphididae) and effect on germination, growth, and yield of wheat and barley. J. Econ. Entomol. 86, 586–593 (1993)

    CAS  Google Scholar 

  5. C. Swarna, K.P. Naidu, G. Nagendrudu, N. Naidu, K. Saraswathi, Spectrophotometric method for the determination of carboxin in its formulations and environmental samples. J Chem 8, 1680–1685 (2011)

    CAS  Google Scholar 

  6. B.A. Bidlingmeyer, Practical HPLC Methodology and Applications (Wiley, Boca Raton, 1992)

    Google Scholar 

  7. J. Fillion, F. Sauve, J. Selwyn, Multiresidue method for the determination of residues of 251 pesticides in fruits and vegetables by gas chromatography/mass spectrometry and liquid chromatography with fluorescence detection. J. AOAC Int. 83, 698–713 (2000)

    CAS  PubMed  Google Scholar 

  8. M. Kvíčalová, P. Doubravová, R. Jobánek, M. Jokešová, V. Očenášková et al., Application of different extraction methods for the determination of selected pesticide residues in sediments. Bull. Environ. Contamin. Toxicol. 89, 21–26 (2012)

    Google Scholar 

  9. C.H. Liu, G.C. Mattern, X. Yu, R.T. Rosen, J.D. Rosen, Multiresidue determination of nonvolatile and thermally labile pesticides in fruits and vegetables by thermospray liquid chromatography/mass spectrometry. J. Agric. Food Chem. 39, 718–723 (1991)

    CAS  Google Scholar 

  10. L. Maldaner, C.C. Santana, I.C. Jardim, HPLC Determination of pesticides in soybeans using matrix solid phase dispersion. J. Liq. Chromatogr. Rel. Technol. 31, 972–983 (2008)

    CAS  Google Scholar 

  11. R. Challa, B. Ramachandra, N. Naidu, Development and validation of RP-HPLC method for the analysis of carboxin in its formulations. Int. J. Sci. Eng. Res. 5, 1004–1024 (2014)

    Google Scholar 

  12. O. Mbaye, A. Maroto, M. Gaye-Seye, L. Stephan, L. Deschamps et al., A new direct laser photo-induced fluorescence method coupled on-line with liquid chromatographic separation for the simultaneous determination of anilides pesticides. Talanta 132, 909–914 (2015)

    CAS  PubMed  Google Scholar 

  13. D. Patel, B. Swami, T. Rajawat, Development and validation of stability indicating UPLC method for simultaneous quantification of imidacloprid, carboxin and captan in pesticide formulation. J. Harmoniz. Res. Appl. Sci. 6, 55–63 (2018)

    CAS  Google Scholar 

  14. K.L. Zan, S. Chantara, Optimization method for determination of carbofuran and carboxin residues in cabbages by SPE and HPLC-UV. Chiang Mai J. Sci. 34, 227–234 (2007)

    CAS  Google Scholar 

  15. M. Roushani, Z. Rahmati, Development of electrochemical sensor based on molecularly imprinted copolymer for detection of nitrofurantoin. J. Iran. Chem. Soc. 16, 999–1006 (2019)

    CAS  Google Scholar 

  16. M. Khadem, F. Faridbod, P. Norouzi, A.R. Foroushani, M.R. Ganjali, S.J. Shahtaheri, Biomimetic electrochemical sensor based on molecularly imprinted polymer for dicloran pesticide determination in biological and environmental samples. J. Iran. Chem. Soc. 13, 2077–2084 (2016)

    CAS  Google Scholar 

  17. A. Khanmohammadi, A. Jalili Ghazizadeh, P. Hashemi, A. Afkhami, F. Arduini, H. Bagheri, An overview to electrochemical biosensors and sensors for the detection of environmental contaminants. J. Iran. Chem. Soc. (2020). https://doi.org/10.1007/s13738-020-01940-z

    Article  Google Scholar 

  18. R. Jarosova, J. Barek, J. Zima, H. Dejmkova, Voltametric, amperometric, and chronopotentiometric determination of submicromolar concentrations of carboxin. Electroanalysis 28, 445–451 (2016)

    CAS  Google Scholar 

  19. C.P. Andrieux, O. Haas, J.M. Saveant, Catalysis of electrochemical reactions at redox-polymer-coated electrodes. Mediation of the iron (III)/iron (II) oxido-reduction by a polyvinylpyridine polymer containing coordinatively attached bisbipyridine chlororuthenium redox centers. J. Am. Chem. Soc. 108, 8175–8182 (1986)

    CAS  Google Scholar 

  20. Y. Umasankar, A.P. Periasamy, S.-M. Chen, Electrocatalysis and simultaneous determination of catechol and quinol by poly (malachite green) coated multiwalled carbon nanotube film. Anal. Biochem. 411, 71–79 (2011)

    CAS  PubMed  Google Scholar 

  21. Y. Wang, X. Ouyang, Y. Ding, B. Liu, D. Xu, L. Liao, An electrochemical sensor for determination of tryptophan in the presence of DA based on poly (l-methionine)/graphene modified electrode. RSC Advances 6, 10662–10669 (2016)

    CAS  Google Scholar 

  22. G-k Liu, B. Ren, D-y Wu, J-m Lin, R-a Gu, Z-q Tian, Electrochemical polymerization of acetylene on Rh electrodes probed by surface-enhanced Ranman Spectroscopy. J. Electroanal. Chem. 594, 73–79 (2006)

    CAS  Google Scholar 

  23. A.M. Yu, D.M. Sun, H.Y. Gu, H.Y. Chen, Catalytic oxidation of ascorbic acid at a polyhistidine modified electrode and its application to the voltammetric resolution of ascorbic acid and dopamine. Anal. Lett. 29, 2633–2643 (1996)

    CAS  Google Scholar 

  24. H.R. Akbari Hasanjani, K. Zarei, Electrochemical sensor for ultrasensitive determination of ceftazidime using hollow platinum nanoparticles/reduced graphene oxide/pencil graphite electrode. Chem. Pap. 72, 1935–1944 (2018)

    CAS  Google Scholar 

  25. K. Zarei, M. Ghorbani, Fabrication of a new ultrasensitive AuNPs˗ MIC˗ based sensor for electrochemical determination of streptomycin. Electrochim. Acta 299, 330–338 (2019)

    CAS  Google Scholar 

  26. K. Zarei, A. Khodadadi, Very sensitive electrochemical determination of diuron on glassy carbon electrode modified with reduced graphene oxide–gold nanoparticle–Nafion composite film. Ecotoxicol. Environ. Saf. 144, 171–177 (2017)

    CAS  PubMed  Google Scholar 

  27. E. Ahmadi, M.R. Eyvani, V. Riahifar, H. Momeneh, C. Karami, Amperometric determination of nevirapine by GCE modified with c-MWCNTs and synthesized 11-mercaptoundecanoyl hydrazinecarbothioamide coated silver nanoparticles. Microchem. J. 146, 1218–1226 (2019)

    CAS  Google Scholar 

  28. M. Jafari, M. Hasanzadeh, R. Karimian, N. Shadjou, Sensitive detection of Trifluralin in untreated human plasma samples using reduced graphene oxide modified by polyethylene imine and silver nanoparticles: a new platform on the analysis of pesticides and chemical injuries. Microchem. J. 147, 741–748 (2019)

    CAS  Google Scholar 

  29. S. Wu, H. Zhao, H. Ju, C. Shi, J. Zhao, Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem. Commun. 8, 1197–1203 (2006)

    CAS  Google Scholar 

  30. J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for Food Packaging Applications. Prog. Polym. Sci. 38, 1629–1652 (2013)

    CAS  Google Scholar 

  31. K. Ataka, J. Heberle, Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes. J. Am. Chem. Soc. 126, 9445–9457 (2004)

    CAS  PubMed  Google Scholar 

  32. C. Jing, Y. Fang, Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of l-cysteine on gold/silver nanoparticles. Chem. Phys. 332, 27–32 (2007)

    CAS  Google Scholar 

  33. Q. Xie, C. Xiang, Y. Zhang, Y. Yuan, M. Liu et al., In situ monitoring of gold-surface adsorption and acidic denaturation of human serum albumin by an isolation-capacitance-adopted electrochemical quartz crystal impedance system. Anal. Chim. Acta 464, 65–77 (2002)

    CAS  Google Scholar 

  34. W. Yang, J.J. Gooding, D.B. Hibbert, Characterisation of gold electrodes modified with self-assembled monolayers of l-cysteine for the adsorptive stripping analysis of copper. J. Electroanal. Chem. 516, 10–16 (2001)

    CAS  Google Scholar 

  35. T. Shoeib, K.M. Siu, A.C. Hopkinson, Silver ion binding energies of amino acids: use of theory to assess the validity of experimental silver ion basicities obtained from the kinetic method. J. Phys. Chem. A 106, 6121–6128 (2002)

    CAS  Google Scholar 

  36. N. Ebrahimi, J.B. Raoof, R. Ojani, M. Ebrahimi, A novel G-quadruplex DNA-based biosensor for sensitive electrochemical determination of thallium(I) ions. J. Iran. Chem. Soc. (2020). https://doi.org/10.1007/s13738-020-02035-5

    Article  Google Scholar 

  37. M. Ebrahimi, J.B. Raoof, R. Ojani, Sensitive electrochemical DNA-based biosensors for the determination of Ag + and Hg2 + ions and their application in analysis of amalgam filling. J. Iran. Chem. Soc. 15, 1871–1880 (2018)

    CAS  Google Scholar 

  38. A.R. Zare, A.A. Ensafi, B. Rezaei, An impedimetric biosensor based on poly(l-lysine)-decorated multiwall carbon nanotubes for the determination of diazinon in water and fruits. J. Iran. Chem. Soc. 16, 2777–2785 (2019)

    CAS  Google Scholar 

  39. H.-G. Park, J.H. Joo, H.-G. Kim, J.-S. Lee, Shape-dependent reversible assembly properties of polyvalent DNA–silver nanocube conjugates. J. Phys. Chem. C 116, 2278–2284 (2012)

    CAS  Google Scholar 

  40. H.R. Akbari Hasanjani, K. Zarei, An electrochemical sensor for attomolar determination of mercury (II) using DNA/poly-l-methionine-gold nanoparticles/pencil graphite electrode. Biosen Bioelectron 128, 1–8 (2019)

    CAS  Google Scholar 

  41. W. Ma, D. Sun, The electrochemical properties of dopamine, epinephrine and their simultaneous determination at a poly (l-methionine) modified electrode. Russ. J. Electrochem. 43, 1382–1389 (2007)

    CAS  Google Scholar 

  42. J. Zhou, C. Dongrong, Q. Xu, Y. Zhang, F. Fu et al., Excellent binding effect of l-methionine for immobilizing silver nanoparticles onto cotton fabrics to improve the antibacterial durability against washing. RSC Adv. 8, 24458–24463 (2018)

    CAS  Google Scholar 

  43. T. Shoeib, B. Sharp, A structural and free energy analysis of Ag + complexes to five small peptides. Inorg. Chim. Acta 362, 1925–1934 (2009)

    CAS  Google Scholar 

  44. U. Nithiyanantham, A. Ramadoss, S. Rao Ede, S. Kundu, DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: supercapacitor and dye sensitized solar cell applications. Nanoscale 6, 8010–8023 (2014)

    CAS  PubMed  Google Scholar 

  45. D. Wu, X. Chu, H. Wang, G. Shen, R. Yu, Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA. Biosens. Bioelectron. 25, 1025–1031 (2010)

    CAS  PubMed  Google Scholar 

  46. O. Hammerich, H. Lund, Organic Electrochemistry (Marcel Dekker Inc, New York, 2000)

    Google Scholar 

  47. C. Tong, G. Xiang, Y. Bai, Interaction of paraquat with calf thymus DNA: a terbium(III) luminescent probe and ultispectral study. J Agr Food Chem 58, 5257–5262 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobra Zarei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanjani, H.R.A., Zarei, K. Fabrication of DNA/poly l-methionine-silver nanoparticles/pencil graphite electrode and its application to the determination of carboxin. J IRAN CHEM SOC 18, 1613–1623 (2021). https://doi.org/10.1007/s13738-020-02140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02140-5

Keywords

Navigation