Skip to main content

Advertisement

Log in

Contribution of IRS-1C Data to Agricultural Monitoring: A Review

  • Review Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Indian Remote Sensing (IRS) program has always focused on food security needs and applications. IRS-1C was the fourth satellite on the IRS platform after many successful applications from IRS-1A, 1B, and P2 satellites. The LISS-I and LISS-II camera onboard IRS-1A/1B/P2 platform provided useful data for various natural resource management applications of country, including inventories of major crops (Wheat, Mustard, Rice, etc.), at the district level. Looking at specific requirements of assessment of multiple crops and associated small field sizes (< 1 ha) in which they are sown, it was felt that spatial and spectral resolution should be improved for assessing more crops and for improved crop discrimination. It was also decided to cater to the needs of village-level crop inventories as well as national-scale crop assessment. Hence, two new sensors, i.e., PAN (spatial resolution 5.8 m) and WiFS (spatial resolution 188 m) camera were introduced in the IRS-1C mission along with LISS-III (spatial resolution 23.5 m). Additionally, the LISS-III sensor, with the inclusion of the SWIR band, led to a significant improvement in crop classification and paved the way for monitoring both mono-cropped and multi-cropped regions. The availability of WIFS data with high temporal resolution (5 days) and large swath (810 km) gave newer applications like the national-level inventory of wheat crop. Pan-sharpened LISS-III data were found to be useful in cadastral level mapping. This paper reviews how the improvements in spatial, spectral, and temporal resolutions in IRS-1C helped in carrying out various agricultural applications including crop inventory at different scales, yield modeling, crop rotation mapping, cropping system analysis, drought assessment, irrigation management, and infrastructure planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Adapted from Singh et al. 2002)

Fig. 4

(Data Source: Oza et al. 1996)

Fig. 5

(Data Source: Singh et al. 2005)

Fig. 6

Similar content being viewed by others

References

  • Batista, T. T., Shimabukuro, Y. E., & Lawrence, W. T. (1997). The long-term monitoring of vegetation cover in the Amazonian region of northern Brazil using NOAA-AVHRR data. International Journal of Remote Sensing, 18, 3195–3210.

    Google Scholar 

  • Benedetti, R., & Rossini, P. (1993). On the use of NDVI profiles as a tool for agricultural statistics—The case study of wheat yield estimate and forecast in Emilia Romanga. Remote Sensing of Environment, 45, 311–326.

    Google Scholar 

  • Brahmabhatt, V. S., Dalwadi, G. B., Chhabra, S. B., Ray, S. S., & Dadhwal, V. K. (2000). Land use/land cover change mapping in Mahi Canal command area, Gujarat, using multi-temporal satellite data. Journal of the Indian Society of Remote Sensing, 28, 221–232.

    Google Scholar 

  • Dadhwal, V. K., & Parihar, J. S. (1985). Estimation of 1983-84 wheat acreage of Karnal district (Haryana) using Landsat MSS digital data. Technical Note, IRS-UP/SAC/CPF/TN/09/85. Space Applications Centre, Ahmedabad, India.

  • Dadhwal, V. K., Parihar, J. S., Ruhal, D. S., Jarwal, S. D., Medhavy, T. T., Khera, A. P., et al. (1989). Effect of acquisition date and TM spectral bands on wheat, mustard and gram classification accuracies. Journal of the Indian Society of Remote Sensing, 17, 19–24.

    Google Scholar 

  • Dadhwal, V. K., & Ray, S. S. (2000). Crop assessment using remote sensing—Part-II: Crop condition assessment and yield forecasting. Indian Journal of Agricultural Economics, 55(2), 55–67.

    Google Scholar 

  • Dadhwal, V. K., Ruhal, D. S., Medhavy, T. T., Jarwal, S. D., Khera, A. P., Singh, J., et al. (1991). Wheat acreage estimation for Haryana using satellite digital data. Journal of Indian Society of Remote Sensing, 19, 1–15.

    Google Scholar 

  • Dadhwal, V. K., Sehgal, V. K., Singh, R. P., & Rajak, D. R. (2003). Wheat yield modelling using satellite remote sensing with weather data: Recent Indian experience. Mausam, 54(1), 253–262.

    Google Scholar 

  • Dadhwal, V. K., Singh, R. P., Dutta, S., & Parihar, J. S. (2002). Remote sensing-based crop inventory: A review of Indian experience. Tropical Ecology, 43(1), 107–122.

    Google Scholar 

  • Dakshinamurti, C., Krishnamurthy, B., Summanwar, A. S., Shanta, P., & Pisharoty, P. R. (1971). Remote Sensing for coconut wilt. In Proceedings of 7th International Symposiums on Remote Sensing of Environment, Ann Arbor (pp. 25–29).

  • DES. (2020). Agricultural Statistics at a Glance, 2019. Directorate of Economics and Statistics, Department of Agriculture Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India, New Delhi.

  • Dhanju, M. S., & Shankaranarayana, H. S. (1978). Agricultural Resources Inventory and Survey Experiment (ARISE), ISRO-SAC-TR-11-78, ISRO, Bangalore, India.

  • Dutta, S., Sharma, S. A., Khera, A. P., Yadav, M., Hooda, R. S., Mothikumar, K. E., et al. (1994). Accuracy assessment in cotton acreage estimation using Indian remote sensing satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 49, 21–26.

    Google Scholar 

  • Dutta, R., Stein, A., & Patel, N. R. (2008). Delineation of diseased tea patches using MXL and texture based classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences., 37(B4), 1693–1700.

    Google Scholar 

  • Goward, S. A., Tucker, C. J., & Dye, D. G. (1985). North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetation, 64, 3–14.

    Google Scholar 

  • Hayes, J. T., O’rourke, P. A., Terjung, W. E., & Todhunter, P. E. (1982). Yield: A numerical crop yield model of irrigated and rainfed agriculture. In Publications in Climatology, XXXV, No. 1, C. W. Thornthwaite Associates and Center for Climatology Research, Elmer, N.J.

  • Justice, C. O., Townshend, J. R. G., Holben, B. N., & Tucker, C. J. (1985). Analysis of phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 6, 1271–1318.

    Google Scholar 

  • Kalra, N. K., Sankhla, D. S., Joshi, F. K., Parmar, A. K., Ghelot, A., & Purohit, N. L. (2000). Soybean acreage estimation in Chambal command area in Rajasthan using IRS-1C data. National Natural Resources Management System (NNRMS) Bulletin, 24, 20–22.

    Google Scholar 

  • Kasturirangan, K., Aravamudan, R., Deekshatulu, B., Joseph, G., & Chandrasekhar, M. (1996). Indian remote sensing satellite (IRS)-1C–The beginning of a new era. Current Science, 70(7), 495–500.

    Google Scholar 

  • Kimothi, M. M., Kalubarme, M. H., Dutta, S., Thapa, R., & Sood, R. K. (1997). Remote sensing of horticultural plantations in Kumarsain tehsil in Shimla district, Himachal Pradesh. Journal of Indian Society of Remote Sensing, 25, 19–26.

    Google Scholar 

  • Kudrat, M., Sharma, K. P., Tiwari, A. K., et al. (2000). Discrimination of newly planted and ratoon crops of sugar cane using multidate IRS-1C LISS-III data: A knowledge-based approach. Journal of the Indian Society of Remote Sensing, 28, 179–185.

    Google Scholar 

  • Kumar, A. S., Aparna, N., & Nayak, S. R. (2020). Remembering IRS-1C mission: The ‘‘Game Changer’’ of Indian Earth Observation Program. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-020-01183-8.

    Article  Google Scholar 

  • Manjunath, K. R., Kundu, N., & Panigrahy, S. (1998). Evaluation of spectral bands and spatial resolution of LISS-II and LISS-III sensors on-board IRS satellites for crop identification. Journal of the Indian Society of Remote Sensing, 26, 197–208.

    Google Scholar 

  • Manjunath, K. R., Panigrahy, S., & Chkaraborty, M. (2000). Crop assessment using remote sensing—Part I: Crop acreage estimation. Indian Journal of Agricultural Economics, 55(2), 29–54.

    Google Scholar 

  • Meir, J., Mauser, W., Hank, T., & Bach, H. (2020). Assessments on the impact of high-resolution-sensor pixel sizes for common agricultural policy and smart farming services in European regions. Computers & Electronics in Agriculture, 169, 105205. https://doi.org/10.1016/j.compag.2019.105205.

    Article  Google Scholar 

  • Murthy, C. S., & Sesha Sai, M. V. R. (2011). Agriculture drought monitoring and assessment. In P. S. Roy, R. S. Dwivedi, & D. Vijayan (Eds.), Remote sensing applications (pp. 303–329). Hyderabad: NRSC, ISRO.

    Google Scholar 

  • Murthy, C. S., Sesha Sai, M. V. R., Bhanuja Kumari, V., & Roy, P. S. (2007). Agricultural drought assessment at disaggregated level using AWiFS/WiFS data of Indian Remote Sensing satellites. Geocarto International, 22(2), 127–140.

    Google Scholar 

  • Navalgund, R. R., Parihar Ajai, J. S., & Nageshwar Rao, P. P. (1991). Crop inventory using remotely sensed data. Current Science, 61, 162–171.

    Google Scholar 

  • Navalgund, R. R., Parihar, J. S., Venkatratnam, L., Krishna Rao, M. V., Panigrahy, S., Chakraborty, M., et al. (1996). Early results from crop studies using IRS-1C data. Current Science, 70, 568–574.

    Google Scholar 

  • Navalgund, R. R., & Ray, S. S. (2019). Application of space technology in agriculture: An overview. SmartAgriPost, 6(6), 6–11.

    Google Scholar 

  • Navalgund, R. R., & Sahai, B. (1985). Remote sensing applications in agriculture—Indian experience and plans. In: Proceedings of 4th Asian Agricultural Symposium (pp. 329–343). February 28–March 1, Kyushu Tokai Univ., Kumamoto, Japan.

  • Oza, M. P., Bhagia, N., Dutta, S., Patel, J. H., & Dadhwal, V. K. (1996). National wheat acreage estimation for 1995–96 using multi-date IRS-1C WiFS data. Journal of Indian Society of Remote Sensing, 24, 243–254.

    Google Scholar 

  • Oza, M. P., Bhagia, N. L., Rajak, D. R., & Dadhwal, V. K. (2003). All India wheat inventory using multi-date IRS WiFS and weather data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(7), 338–343.

    Google Scholar 

  • Pandya, M. R., Singh, R. P., Murali, K. R., Babu, P. N., Kirankumar, A. S., & Dadhwal, V. K. (2002). Bandpass solar exo-atmospheric irradiance and Rayleigh optical thickness of sensors onboard Indian remote sensing satellites—1B, 1C, 1D and P4. IEEE Transactions on Geoscience and Remote Sensing, 40(3), 714–718.

    Google Scholar 

  • Panigrahy, S., & Chakraborty, M. (1996). A case study for Burdhaman district of West Bengal. In Indo-U.S workshop on remote sensing and its applications. Mumbai, India.

  • Panigrahy S., Singh, A., Dutta, S., and Ray, S. S. (2001a). Onion crop inventory using IRS LISS-III data. Scientific Report, RSAM/SAC/HORT/SR/04/2001, Space Applications Centre, Ahmedabad.

  • Panigrahy, S., Dutta, S., Chakraborty, M., Singh, A., & Ray, S. S. (2001b). Mango orchard inventory using remote sensing data. Scientific Report, RSAM/SAC/HORT/SR/02/2001, Space Applications Centre, Ahmedabad.

  • Panigrahy, S., Singh, A., & Ray, S. S. (2001c). Grape orchard inventory using LISS-III data. Scientific Report, RSAM/SAC/HORT/SR/06/2001, Space Applications Centre, Ahmedabad.

  • Panigrahy, S., Manjunath, K. R., & Ray, S. S. (2005). Deriving cropping system performance indices using remote sensing data and GIS. International Journal of Remote Sensing, 26(12), 2595–2606.

    Google Scholar 

  • Panigrahy, S., & Parihar, J. S. (1992). Role of middle infrared bands of Landsat thematic mapper in determining the classification accuracy of rice. International Journal of Remote Sensing, 13, 2943–2949.

    Google Scholar 

  • Panigrahy, S., Singh, R. P., Sharma, S. A., & Chakraborty, M. (1995). Results on potential use of simulated IRS-1C WiFS data for crop monitoring. Journal of the Indian Society of Remote Sensing, 23, 175–184.

    Google Scholar 

  • Parihar, J. S. (2016). FASAL concept in meeting the requirements of assessment and forecasting crop production affected by extreme weather events. Mausam, 67(1), 93–104.

    Google Scholar 

  • Parihar, J. S., & Oza, M. P. (2006). FASAL: an integrated approach for crop assessment and production forecasting. Proceedings of SPIE: Agriculture and Hydrology Applications of Remote Sensing, 6411, 641101. https://doi.org/10.1117/12.713157.

    Article  Google Scholar 

  • Patel, N. R., Manjunath, M. N., Shukla, M., & Pande, L. M. (2004). Discrimination and empirical modeling of wheat and sugarcane crops using remote sensing and ground truth observations. Asian Journal of Geoinformatics, 4(4), 13–23.

    Google Scholar 

  • Patnaik, C., Chakraborty, M., & Ladsariya, K. R. (1998). Satellite remote sensing based Mentha arvensis acreage estimation in U.P. Scientific Note SAC/RESA/ARG/SR04/1998. Space Applications Centre, Ahmedabad, India.

  • Patnaik, C., & Dadhwal, V. K. (1995). Study of crop discrimination by simulated LISS-III data. Journal of the Indian Society of Remote Sensing, 23, 195–199.

    Google Scholar 

  • Prasad, K., Anup, L. C., Singh, R. P., & Kaftos, M. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8, 26–33.

    Google Scholar 

  • Purohit, N. L., Joshi, F. K., Sankhla, D. S., Ravi, N., Sudha, R., & Dadhwal, V. K. (1997). Accuracy of mustard and wheat inventory at village-level using LISS-II digital data in Pali district, Rajasthan. Journal of Indian Society of Remote Sensing, 25, 137–144.

    Google Scholar 

  • Rajak, D. R., Oza, M. P., Bhagia, N., & Dadhwal, V. K. (2002). Monitoring Cropping Pattern Changes Using Multi-temporal WiFS Data. Geocarto International, 17(3), 53–58. https://doi.org/10.1080/10106040208542244.

    Article  Google Scholar 

  • Rajak, D. R., Oza, M. P., Bhagia, N., & Dadhwal, V. K. (2005). Spectral wheat growth profile in Punjab using IRS WiFS data. Journal of the Indian Society of Remote Sensing, 33, 345–352.

    Google Scholar 

  • Rastogi, A., Kalra, N., Agarwal, P. K., Sharma, R. C., Harit, S. K., Navalgund, R. R., et al. (2000). Estimation of wheat leaf area index from IRS LISS-III data using Price model. International Journal of Remote Sensing, 21(15), 2943–2949. https://doi.org/10.1080/01431160050121357.

    Article  Google Scholar 

  • Ray, S. S. (2004). Merging of IRS LISS-III and Pan data—Evaluation of various methods for a predominantly agricultural area. International Journal of Remote Sensing., 25(13), 2657–2664.

    Google Scholar 

  • Ray, S. S., & Dadhwal, V. K. (2001). Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS. Agricultural Water Management, 49(3), 239–249.

    Google Scholar 

  • Ray, S. S., Dadhwal, V. K., & Navalgund, R. R. (2002). Performance evaluation of an irrigation command area using remote sensing: A case study of Mahi command, Gujarat, India. Agricultural Water Management, 56(2), 81–91.

    Google Scholar 

  • Ray, S. S., Dutta, S., Kundu, N., & Panigrahy, S. (2000). A GIS and remote sensing-based approach for siting cold storage infrastructure for horticultural crops: A case study for potato crop in Bardhaman district, West Bengal, India. Journal of the Indian Society of Remote Sensing, 28, 171–178.

    Google Scholar 

  • Ray, S. S., & Neetu, S. M. (2017). Chapter 5: Crop area estimation with Remote Sensing. In J. Delincé (Ed.), Handbook on remote sensing for agricultural statistics (pp. 131–183). Rome: Global Strategy Improving Agricultural and Rural Statistics (GSARS), FAO Statistics Division (ESS), FAO.

    Google Scholar 

  • Ray, S. S., Neetu, S. M., & Gupta, S. (2014). Use of remote sensing in crop forecasting and assessment of impact of natural disasters: Operational approaches in India. In Proceedings of the FAO expert meeting on crop monitoring for improved food security (pp. 111–121), Vientiane, Lao PDR; 17 February 2014. (Ed.: M. K. Srivastava). RAP Publication 2014/28. FAO and ADB, 2015.

  • Ray, S. S., Pokharna, S. S., & Ajai. (1993). An attempt to estimate mango acreage in Valsad district of Gujarat using IRS-1B LISS-II data. Scientific Note RSAM/SAC/CAPE-II/SN/19/93. Space Applications Centre, Ahmedabad, India.

  • Ray, S. S., Sood, Anil, Panigrahy, S., & Parihar, J. S. (2005). Derivation of Indices using remote sensing data to evaluate cropping systems. Journal of the Indian Society of Remote Sensing., 33(4), 475–481.

    Google Scholar 

  • Sahai, B. (1985). Agricultural remote sensing in the Indian context. In Proceedings of US-INDIA symposium-cum-workshop on remote sensing fundamentals and applications. March 11–15. Space Applications Centre, Ahmedabad, India.

  • Sahai, B., Chandrasekhar, S., Barde, N. K., & NagBhushna, S. R. (1977). Agricultural resources inventory and surveys experiment. In M. J. Rycroft & A. C. Stickland (Eds.), COSPAR space research (pp. 3–8). Oxford: Pergamon Press.

    Google Scholar 

  • Sahai, B., & Dadhwal, V. K. (1990). Remote sensing in agriculture. In J. P. Verma & A. Verma (Eds.), Technology blending and agrarian prosperity (pp. 83–98). New Delhi: Malhotra Publishing House.

    Google Scholar 

  • Sehgal, V. K., & Dubey, R. P. (1997). Evaluation of potential usefulness of IRS-1C WiFS simulated data for dryland rabi sorghum crop discrimination. Journal of the Indian Society of Remote Sensing, 25, 137–143.

    Google Scholar 

  • Sehgal, V. K., Sastri, C. V. S., Kalra, N., & Dadhwal, V. K. (2005). Farm-level yield mapping for precision crop management by linking remote sensing inputs and a crop simulation model. Journal of the Indian Society of Remote Sensing, 33(1), 131–136.

    Google Scholar 

  • Sesha Sai, M. V. R., Murthy, C. S., Chandrasekar, K., Jeyaseelan, A. T., Diwakar, P. G., & Dadhwal, V. K. (2016). Agricultural drought: Assessment & monitoring. Mausam, 67(1), 131–142.

    Google Scholar 

  • Sharma, R. (1995). Coconut inventory using remote sensing data. SAC Courier. 20. Space Applications Centre, Ahmedabad, India.

  • Sharma, T., Ravi, N., Tomar, K. P., & Chakravarty, N. V. K. (1990). Evaluation of middle-infrared radiances for wheat yield estimation. In Proceedings of national symposium on remote sensing for agriculture applications (pp. 325–332). December 6–8. IARI, N. Delhi.

  • Singh, R. P., Dadhwal, V. K., & Navalgund, R. R. (1999). Wheat crop inventory using high spectral resolution IRS-P3 MOS-B spectrometer data. Journal of Indian Society of Remote Sensing, 27, 167–173.

    Google Scholar 

  • Singh R.P., Dadhwal, V.K., Singh, K.P. & Navalgund. R.R. (2001). Study on sensor’s spatial, radiometric and temporal resolution requirements for crop monitoring. In: Proceedings of symposium on Advances in Electronics (ELECTRO-2001) (pp. 213–218). January 4–6. B.H.U, Varanasi, India.

  • Singh, R. P., Sridhar, V. N., Dadhwal, V. K., Singh, K. P., & Navalgund, R. R. (2002). Comparative evaluation of indian remote sensing multi-spectral sensors data for crop classification. Geocarto International, 17(2), 5–9.

    Google Scholar 

  • Singh, R. P., Sridhar, V. N., Dadhwal, V. K., et al. (2005). Village level crop inventory using remote sensing and field survey data. Journal of the Indian Society of Remote Sensing, 33, 93–98.

    Google Scholar 

  • Tucker, C. J., Townshend, J. R. G., & Goff, T. E. (1985). African land cover classification using satellite data. Science, 227, 369–375.

    Google Scholar 

  • Vintila, R., & Baret, F. (2006). An optimal temporal resolution of multispectral satellite data for field-scale agriculture. In ISPRS Archives XXXVI-8/W48 Workshop proceedings: Remote sensing support to crop yield forecast and area estimates (pp. 139–141).

  • Vyas, S. P., Manjunath, K. R., Kalubarme, M. H., & Gupta, P. C. (1993). Remote sensing of dryland farming pulse crop in Hamirpur district of U.P. pp. 314-320. In: Proceedings of National symposium on rs applications for resource management. November 25–27, Guwahati.

  • Yadav, I. S., Srinivasa Rao, N. K., Reddy, B. M. C., Rawal, R. D., Srinivasan, V. R., Sujatha, N. T., et al. (2002). Acreage and production estimation of mango orchards using Indian Remote Sensing (IRS) satellite data. Scientia Horticulturae, 93(2), 105–123.

    Google Scholar 

  • Zandastra, H. G. (1977). Cropping system research for the Asian farmers. In: Proceedings of the symposium on cropping systems research and development for the Asian farmer (pp. 10–29). IRRI, Manila, 21–24 September 1976 (Manila: IRRI).

Download references

Acknowledgements

Authors would like to thank the Journal of Indian Society of Remote Sensing and its Guest Editors for giving them the opportunity to write a review article on IRS-1C applications in agriculture for its special issue on 25 years of IRS-1C. Thanks are also due to the scientists of the Indian Space Research Organisation for conducting research studies using IRS-1C data and sharing their papers, which could help in writing this review article.

Author information

Authors and Affiliations

Authors

Contributions

SSR and RPS contributed to conceptualization, writing—review, and editing. KC contributed to review of the literature and writing—original draft.

Corresponding author

Correspondence to Shibendu S. Ray.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S.S., Singh, R.P. & Choudhary, K. Contribution of IRS-1C Data to Agricultural Monitoring: A Review. J Indian Soc Remote Sens 49, 71–83 (2021). https://doi.org/10.1007/s12524-020-01282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01282-6

Keywords

Navigation