Skip to main content

Advertisement

Log in

In situ drilling and milling of thin sheet using microelectrical discharge machining

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study investigates fabrication of microrod using block electrical discharge grinding process and performs in situ drilling and milling of thin sheets using the fabricated rods by the microelectrical discharge machining process. The microrods are fabricated at a wide range of discharge energy (DE) by varying voltage and capacitance, and their effect on machining time (MT), material removal rate, average diameter and standard deviation in diameter (SDD) are evaluated. To get the benefit of both higher efficiency as well as dimensional accuracy, a technique of variable energy setting is coined, wherein higher DE is applied initially to increase efficiency followed by lower DE to improve dimensional accuracy and precision. The fabricated microrods are then used as tools for in situ microelectrical discharge drilling (µED-drilling) and microelectrical discharge milling (µED-milling) on brass and titanium sheet. In µED-drilling, MT and tool wear (TW) of brass is lower as compared to titanium, whereas overcut of brass is higher than titanium. ‘To and fro’ technique is used to compensate the TW in µED-milling and to achieve dimensional accuracy. The technique is successful in achieving fairly straight microslot in brass with SDD of 17 µm as compared to titanium with SDD of 113.50 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh AK, Patowari PK, Deshpande NV (2019) Analysis of micro-rods machined using reverse micro-EDM. J Braz Soc Mech Sci Eng 41:15. https://doi.org/10.1007/s40430-018-1519-4

    Article  Google Scholar 

  2. Das AK, Kumar P, Sethi A et al (2016) Influence of process parameters on the surface integrity of micro-holes of SS304 obtained by micro-EDM. J Braz Soc Mech Sci Eng 38:2029–2037. https://doi.org/10.1007/s40430-016-0488-8

    Article  Google Scholar 

  3. Sheu D-Y, Cheng C-C (2012) Micro three-dimensional cavities tools fabrication on PCD by µ-EDM scanning process. Mater Manuf Process 28:42–47. https://doi.org/10.1080/10426914.2012.718468

    Article  Google Scholar 

  4. Mujumdar SS, Curreli D, Kapoor SG, Ruzic D (2015) Modeling of melt-pool formation and material removal in micro-electrodischarge machining. J Manuf Sci Eng 137:31007. https://doi.org/10.1115/1.4029446

    Article  Google Scholar 

  5. Jahan MP, Wong YS, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Technol 209:1706–1716. https://doi.org/10.1016/j.jmatprotec.2008.04.029

    Article  Google Scholar 

  6. Yang F, Qian J, Wang J, Reynaerts D (2018) Simulation and experimental analysis of alternating-current phenomenon in micro-EDM with a RC-type generator. J Mater Process Technol 255:865–875. https://doi.org/10.1016/j.jmatprotec.2018.01.031

    Article  Google Scholar 

  7. Chavoshi SZ, Goel S, Morantz P (2017) Current trends and future of sequential micro-machining processes on a single machine tool. Mater Des 127:37–53. https://doi.org/10.1016/j.matdes.2017.04.057

    Article  Google Scholar 

  8. Karthikeyan G, Ramkumar J, Dhamodaran S (2014) Block EDG: issues and applicability in multiple pass µED-milling. Mach Sci Technol 18:120–136. https://doi.org/10.1080/10910344.2014.863650

    Article  Google Scholar 

  9. Sun Y, Gong Y (2017) Experimental study on the microelectrodes fabrication using low speed wire electrical discharge turning (LS-WEDT) combined with multiple cutting strategy. J Mater Process Technol 250:121–131. https://doi.org/10.1016/J.JMATPROTEC.2017.07.015

    Article  Google Scholar 

  10. Hourmand M, Sarhan AAD, Sayuti M (2017) Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review. Int J Adv Manuf Technol 91:1023–1056. https://doi.org/10.1007/s00170-016-9671-4

    Article  Google Scholar 

  11. Kar S, Patowari PK (2018) Electrode wear phenomenon and its compensation in micro electrical discharge milling: a review. Mater Manuf Process 33:1491–1517. https://doi.org/10.1080/10426914.2018.1453144

    Article  Google Scholar 

  12. Jahan MP, Rahman M, Wong YS, Fuhua L (2010) On-machine fabrication of high-aspect-ratio micro-electrodes and application in vibration-assisted micro-electrodischarge drilling of tungsten carbide. Proc Inst Mech Eng Part B J Eng Manuf 224:795–814. https://doi.org/10.1243/09544054JEM1718

    Article  Google Scholar 

  13. Ravi N, Chuan SX (2002) The effects of electro-discharge machining block electrode method for microelectrode machining. J Micromech Microeng 12:532–540. https://doi.org/10.1088/0960-1317/12/5/304

    Article  Google Scholar 

  14. Ravi N, Huang H (2002) Fabrication of symmetrical section microfeatures using the electro-discharge machining block electrode method. J Micromech Microeng 12:905–910. https://doi.org/10.1088/0960-1317/12/6/322

    Article  Google Scholar 

  15. Hourmand M, Sarhan AAD, Noordin MY (2017) Development of new fabrication and measurement techniques of micro-electrodes with high aspect ratio for micro EDM using typical EDM machine. Meas J Int Meas Confed 97:64–78. https://doi.org/10.1016/j.measurement.2016.11.020

    Article  Google Scholar 

  16. Koyano T, Sugata Y, Hosokawa A, Furumoto T (2019) Micro-electrical discharge machining of micro-rods using tool electrodes with high electrical resistivity. Precis Eng 55:95–100. https://doi.org/10.1016/j.precisioneng.2018.08.013

    Article  Google Scholar 

  17. Feng GL, Yang XD, Chi GX (2017) Study on machining characteristics of micro EDM with high spindle speed using non-contact electric feeding method. Int J Adv Manuf Technol 92:1979–1989. https://doi.org/10.1007/s00170-017-0290-5

    Article  Google Scholar 

  18. Oliaei SNB, Özdemir C, Karpat Y (2014) On-machine fabrication of PCD and WC micro end mills using micro electro discharge machining. Int J Mechatron Manuf Syst 7:246. https://doi.org/10.1504/IJMMS.2014.067166

    Article  Google Scholar 

  19. Li Z, Bai J, Tang J (2018) Micro-EDM method to fabricate three-dimensional surface textures used as SERS-active substrate. Appl Surf Sci 458:810–818. https://doi.org/10.1016/J.APSUSC.2018.07.132

    Article  Google Scholar 

  20. Li Z, Bai J, Cao Y et al (2019) Fabrication of microelectrode with large aspect ratio and precision machining of micro-hole array by micro-EDM. J Mater Process Technol 268:70–79. https://doi.org/10.1016/J.JMATPROTEC.2019.01.009

    Article  Google Scholar 

  21. Kar S, Patowari PK (2019) Effect of non-electrical parameters in fabrication of micro rod using BEDG. Mater Manuf Process 34:1262–1273. https://doi.org/10.1080/10426914.2019.1643475

    Article  Google Scholar 

  22. Masuzawa T, Tönshoff HK (1997) Three-dimensional micromachining by machine tools. CIRP Ann 46:621–628. https://doi.org/10.1016/S0007-8506(07)60882-8

    Article  Google Scholar 

  23. Karthikeyan G, Garg AK, Ramkumar J, Dhamodaran S (2012) A microscopic investigation of machining behavior in μED-milling process. J Manuf Process 14:297–306. https://doi.org/10.1016/j.jmapro.2012.01.003

    Article  Google Scholar 

  24. Jahan MP, Alavi F, Kirwin R, Mahbub R (2018) Micro-EDM induced surface modification of titanium alloy for biocompatibility. Int J Mach Mach Mater 20:274–298. https://doi.org/10.1504/IJMMM.2018.093548

    Article  Google Scholar 

  25. Kumar Saxena K, Suman Srivastava A, Agarwal S (2016) Experimental investigation into the micro-EDM characteristics of conductive SiC. Ceram Int 42:1597–1610. https://doi.org/10.1016/j.ceramint.2015.09.111

    Article  Google Scholar 

  26. D’Urso G, Maccarini G, Ravasio C (2014) Process performance of micro-EDM drilling of stainless steel. Int J Adv Manuf Technol 72:1287–1298. https://doi.org/10.1007/s00170-014-5739-1

    Article  Google Scholar 

  27. Kar S, Patowari PK (2019) Experimental investigation of machinability and surface characteristics in microelectrical discharge milling of titanium, stainless steel and copper. Arab J Sci Eng 44:7843–7858. https://doi.org/10.1007/s13369-019-03918-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Kar.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, S., Patowari, P.K. In situ drilling and milling of thin sheet using microelectrical discharge machining. J Braz. Soc. Mech. Sci. Eng. 43, 31 (2021). https://doi.org/10.1007/s40430-020-02749-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02749-w

Keywords

Navigation