Skip to main content
Log in

Influence of freeze-thaw cycles and high temperature exposure on immobilization performance of geopolymer-zeolite A composites for strontium radionuclide

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work aims to explore the influence of freeze-thaw cycles and high temperature exposure on immobilization performance of geopolymer-zeolite A composites (GZAC) for strontium radionuclide. After 45 freeze-thaw cycles, no visible change in the phase composition, microscopic morphology and cumulative leaching fractions (CLF) of the Sr2+ ions could be observed. Although the zeolite phases in GZAC were completely destroyed at 800 °C, the CLF of Sr2+ ions from the GZAC still meet Chinese National Standard (GB14569.1-2011). At 1000 °C, the CLF of Sr2+ ions decrease distinctly, attributing to the further viscous sintering and obvious reduction in open porosity. Therefore, we could conclude that GZAC presents remarkable thermal stability for radioactive strontium immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El-Kamash AM, El-Naggar MR, El-Dessouky MI (2006) Immobilization of cesium and strontium radionuclides in zeolite-cement blends. J Hazard Mater 136(2):310–316. doi:https://doi.org/10.1016/j.jhazmat.2005.12.020

    Article  CAS  PubMed  Google Scholar 

  2. Tan QW, Li N, Xu ZH, Chen XY, Peng X, Shuai Q, Yao ZZ (2019) Comparative performance of cement and metakaolin based-geopolymer blocks for strontium immobilization. J Ceram Soc Jpn 127(1):44–49

    Article  CAS  Google Scholar 

  3. Kim CK, Kong JY, Chun BS, Park JW (2013) Radioactive removal by adsorption on Yesan clay and zeolite. Environ Earth Sci 68(8):2393–2398. doi:https://doi.org/10.1007/s12665-012-1923-5

    Article  CAS  Google Scholar 

  4. Galambos M, Osacky M, Rosskopfova O, Krajnak A, Rajec P (2012) Comparative study of strontium adsorption on dioctahedral and trioctahedral smectites. J Radioanal Nuclear Chem 293(3):889–897. https://doi.org/10.1007/s10967-012-1752-8

    Article  CAS  Google Scholar 

  5. Galambos M, Magula M, Dano M, Osacky M, Rosskopfova O, Rajec P (2012) Comparative study of cesium adsorption on dioctahedral and trioctahedral smectites. J Radioanal Nuclear Chem 293(3):829–837. https://doi.org/10.1007/s10967-012-1741-y

    Article  CAS  Google Scholar 

  6. Liu D, Zheng H (2017) Enhanced adsorption of radioactive strontium ions from aqueous solution by H2O2-modified attapulgite. J Radioanal Nuclear Chem 311(3):1883–1890. https://doi.org/10.1007/s10967-017-5184-3

    Article  CAS  Google Scholar 

  7. Lima E, Ibarra IA, Lara V, Bosch P, Bulbulian S (2008) Cesium leaching from gamma-irradiated CsA and CsX zeolites. J Hazard Mater 160(2–3):614–620

    Article  CAS  Google Scholar 

  8. Kuenzel C, Cisneros JF, Neville TP, Vandeperre LJ, Simons SJR, Bensted J, Cheeseman CR (2015) Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J Nuclear Mater 466:94–99

    Article  CAS  Google Scholar 

  9. Cui XM, He Y, Liu LP, Chen JY (2011) NaA zeolite synthesis from geopolymer precursor. MRS Commun 1(1):49–51. https://doi.org/10.1557/mrc.2011.15

    Article  CAS  Google Scholar 

  10. He Y, Cui XM, Mao J, Liu LP, Liu XD, Chen JY (2012) The hydrothermal transformation of solid geopolymers into zeolites. Microporous Mesoporous Mater 161:187–192

    Article  Google Scholar 

  11. Qiu XM, Liu YD, Li D, Yan CJ (2015) Preparation of NaP zeolite block from fly ash-based geopolymer via in situ hydrothermal method. J Porous Mater 22(1):291–299. https://doi.org/10.1007/s10934-014-9895-3

    Article  CAS  Google Scholar 

  12. Duan JX, Li J, Lu ZY (2015) One-step facile synthesis of bulk zeolite A through metakaolin-based geopolymer gels. J Porous Mater 22(6):1519–1526. https://doi.org/10.1007/s10934-015-0034-6

    Article  CAS  Google Scholar 

  13. Villa C, Pecina ET, Torres R, Gomez L (2010) Geopolymer synthesis using alkaline activation of natural zeolite. Constr Build Mater 24(11):2084–2090. doi:https://doi.org/10.1016/j.conbuildmat.2010.04.052

    Article  Google Scholar 

  14. Xu Z, Jiang Z, Wu D, Peng X, Xu Y, Li N, Qi Y, Li P (2016) Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer. Ceram Int 5(5):4434–4439

    Article  Google Scholar 

  15. El-Eswed BI, Yousef RI, Alshaaer M, Hamadneh I, Al-Gharabli SI, Khalili F (2015) Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int J Miner Process 137:34–42

    Article  CAS  Google Scholar 

  16. Lambertin D, Boher C, Dannoux-Papin A, Galliez K, Frizon F (2013) Influence of gamma ray irradiation on metakaolin based sodium geopolymer. J Nuclear Mater 443(1):311–315

    Article  CAS  Google Scholar 

  17. Wang KT, He Y, Song XL, Cui XM (2015) Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials. Appl Clay Sci 114:586–592

    Article  CAS  Google Scholar 

  18. Xu Z, Zao J, Wu D, Xi P, Xu Y, Na L, Qi Y, Ping L (2016) Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer. Ceram Int 43(5):4434–4439

    Article  Google Scholar 

  19. Xu ZH, Jiang Z, Wu DD, Peng X, Xu YH, Li N, Qi YJ, Li P (2017) Immobilization of strontium-loaded zeolite A by metakaolin based-geopolymer. Ceram Int 43(5):4434–4439

    Article  CAS  Google Scholar 

  20. Wang HL, Li HH, Wang YX, Yan FY (2015) Preparation of macroporous ceramic from metakaolinite-based geopolymer by calcination. Ceram Int 41(9):11177–11183

    Article  CAS  Google Scholar 

  21. He PG, Jia DC, Wang MR, Zhou Y (2011) Thermal evolution and crystallization kinetics of potassium-based geopolymer. Ceram Int 37(1):59–63

    Article  CAS  Google Scholar 

  22. Xie N, Bell JL, Waltraud M, Krivenw (2010) Fabrication of structural leucite glass-ceramics from potassium-based geopolymer precursors. J Am Ceram Soc 93(9):2644–2649

    Article  CAS  Google Scholar 

  23. Klemm AJ, Wieloch M, Klemm P, Marks W (2004) Multicriterion optimisation approach in a design of cementitious composites with improved resistance to freezing/thawing. JAMA J Am Med Assoc 216(2):278–288

    Google Scholar 

  24. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cement Concrete Res 35(10):1984–1992

    Article  Google Scholar 

  25. Tao J, Yuan Y, Taerwe L (2010) Compressive strength of self-compacting concrete during high-temperature exposure. J Mater Civ Eng 22(10):1005–1011

    Article  CAS  Google Scholar 

  26. Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement Concrete Res 37(12):1583–1589

    Article  CAS  Google Scholar 

  27. Kuenzel C, Grover LM, Vandeperre L, Boccaccini AR, Cheeseman CR (2013) Production of nepheline/quartz ceramics from geopolymer mortars. J Eur Ceram Soc 33(2):251–258

    Article  CAS  Google Scholar 

  28. Sun ZQ, Cui H, An H, Tao DJ, Xu Y, Zhai JP, Li Q (2013) Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr Build Mater 49:281–287

    Article  Google Scholar 

  29. He P, Jia D (2013) Low-temperature sintered pollucite ceramic from geopolymer precursor using synthetic metakaolin. J Mater Sci 48(4):1812–1818. doi:https://doi.org/10.1007/s10853-012-6944-7

    Article  CAS  Google Scholar 

  30. Abdollahi T, Towfighi J, Rezaei-Vahidian H (2019) Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environ Technol Innov 17:100592

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 51404200) and the research fund from Southwest University of Science and Technology (Nos. 14tdgk04, 17lzx618, 18lzx654).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Peng or Zhonghui Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Peng, X., Jiang, X. et al. Influence of freeze-thaw cycles and high temperature exposure on immobilization performance of geopolymer-zeolite A composites for strontium radionuclide. J Radioanal Nucl Chem 327, 1037–1043 (2021). https://doi.org/10.1007/s10967-020-07574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07574-y

Keywords

Navigation