Skip to main content
Log in

Extraction and Characterization of Microcrystalline Cellulose from Date Palm Fibers using Successive Chemical Treatments

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of present study is to extract microcrystalline cellulose (MCC) from fruit bunch branches fibers of Algerian date palm trees (phoenix dactylifera L) as biofiber for reinforcing green composite and thus replace synthetic fibers in various applications. The extraction of MCC from date palm fibers passed via serial chemical treatments, including alkali, bleaching and acid hydrolysis process. Subsequently, several analyses were implemented to determine the characteristics of each sample prepared at different stages of treatment. Fourier transform infrared spectroscopy (FTIR) analysis revealed the effectiveness in removing substantial amorphous components of lignin and hemicellulose from date palm fibers. Altered and irregular shaped morphology of microfibrils with slightly rougher surface was observed for microcrystalline date palm fibers (MCC-DP) through scanning electron microscope (SEM) examination. Furthermore, X-ray diffraction (XRD) presents the increasing of the crystallinity from 55% in raw date palm (R-DP) to 76.26% in MCC-DP. Also, the results of TGA and DSC indicate the MCC-DP has greater thermal stability than that of R-DP, A-DP and B-DP fibers. These results demonstrate the feasibility of using date palm waste (fruit bunch branches fibers) to extract a good reinforcing material (MCC) with high properties and low cost, which qualifies its use in composite materials. Also, it can be transformed into nano-scale for isolating nanocrystalline cellulose with the aim of using it, in the future to produce ecofriendly bionanocomposites in different fields of applications, biomedical, pharmaceutical and packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amroune S, Bezazi A, Belaadi A, Zhu C, Scarpa F, Rahatekar S, Imad A (2015) Appl Sci Manuf 71:95–106

    Article  CAS  Google Scholar 

  2. Abdal-Hay A, Suardana NPG, Choi KS, Lim JK (2012) Int J Precis Eng Manuf 13:1199–1206

    Article  Google Scholar 

  3. Alothman OY, Alrashed MM, Anis A, Naveen J, Jawaid M (2020) Polymers 12:1–18

    Google Scholar 

  4. S Amroune S, Bezazi A, Dufresne A, Scarpa F, Imad A (2019) J Nat Fibers 0478: 1–18

  5. Alotaibi MD, Alshammari BA, Saba N, Alothman OY, Sanjay MR, Almutairi Z, Jawaid M (2019) Int J Biol Macromol 135:69–76

    Article  CAS  Google Scholar 

  6. AL-Oqla F M, Alothman O Y, Jawaid M, Sapuan S M, Es-Saheb M H, (2014) In Biomass and bioenergy. Springer, Cham, pp 1–25

    Google Scholar 

  7. Bolio-López GI, Cadenas-Madrigal G, Veleva L, Falconi R, de la Cruz-Burelo P, Hernández-Villegas MM, Pelayo-Muñoz L (2015) Int J Innov Sci Eng Technol 2:977–981

    Google Scholar 

  8. Kian LK, Jawaid M, Ariffin H, Alothman OY (2017) Int J Biol Macromol 103:931–940

    Article  CAS  Google Scholar 

  9. Fardioui M, Stambouli A, Gueddira T, Dahrouch A, Bouhfid R (2016) J Polym Environ 24:356–362

    Article  CAS  Google Scholar 

  10. Kale RD, Bansal PS, Gorade VG (2018) J Polym Environ 26:355–364

    Article  CAS  Google Scholar 

  11. Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013) Carbohydr Polym 93:628–634

    Article  Google Scholar 

  12. Rasheed M, Jawaid M, Karim Z, Abdullah LC (2020) Molecules 25:2824

    Article  CAS  Google Scholar 

  13. Tarchoun AF, Trache D, Klapötke TM, Derradji M, Bessa W (2019) Cellulose 26(2019):13–14

    Google Scholar 

  14. Hussin MH, Pohan NA, Garba ZN, Kassim MJ, Rahim AA, Brosse N, Haafiz MM (2016) Int J Biol Macromol 92:11–19

    Article  CAS  Google Scholar 

  15. Shanmugam N, Nagarkar RD, Kurhade M (2015) Indian J Nat Prod Resou 6:42–50

    Google Scholar 

  16. Prosvirnikov DB, Safin RG, Zakirov SR (2018) Solid State Phenom 284:773–778

    Article  Google Scholar 

  17. Tarchoun AF, Trache D, Klapötke TM (2019) Int J Biol Macromol 138:837–845

    Article  CAS  Google Scholar 

  18. Collazo-Bigliardi S, Ortega-Toro R, Boix AC (2018) Carbohydr Polym 191:205–215

    Article  CAS  Google Scholar 

  19. Peng BL, Dhar N, Liu HL, Tam KC (2011) Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  20. Abdullah N A, Sainorudin M H, Asim N, Mohammad M, Abd Kadir N H, Yaakob Z (2020) IOP Conf Ser Mater Sci Eng: 739

  21. Hermawan D, Lai TK, Jafarzadeh S, Gopakumar DA, Hasan M, Owolabi FT, Khalil HA (2019) Bio Resources 14:3389–3410

    CAS  Google Scholar 

  22. Alotabi MD, Alshammari BA, Saba N, Alothman OY, Kian LK, Khan A, Jawaid M (2020) J Polym Environ 28:1766–1775

    Article  CAS  Google Scholar 

  23. Chen H, Yu Y, Zhong T, Wu Y, Li Y, Wu Z, Fei B (2017) Cellulose 24:333–347

    Article  CAS  Google Scholar 

  24. Zhou C, Wu Q (2012) Synth Charact Appl :103–120

  25. Xiang LY, Mohammed MAP, Baharuddin AS (2016) Carbohydr Polym 148:11–20

    Article  CAS  Google Scholar 

  26. Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Carbohydr Polym 87:1131–1138

    Article  CAS  Google Scholar 

  27. Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A (2020) Int J Biol Macromol 155:730–739

    Article  CAS  Google Scholar 

  28. Owolabi AF, Haafiz MM, Hossain MS, Hussin MH, Fazita MN (2017) Int J Biol Macromol 95:1228–1234

    Article  CAS  Google Scholar 

  29. Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N (2014) Carbohydr Polym 104:223–230

    Article  CAS  Google Scholar 

  30. Kian LK, Saba N, Jawaid M, Fouad H (2020) Int J Biol Macromol 156:347–353

    Article  CAS  Google Scholar 

  31. Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Haafiz MM (2016) Int J Biol Macromol 93:789–804

    Article  CAS  Google Scholar 

  32. Jahan MS, Saeed A, He Z, Ni Y (2011) Cellulose 18:451–459

    Article  CAS  Google Scholar 

  33. Ferrer A, Salas C, Rojas OJ (2016) Ind Crops Prod 84:337–343

    Article  CAS  Google Scholar 

  34. Merci A, Urbano A, Grossmann MVE, Tischer CA, Mali S (2015) Food Res Int 73:38–43

    Article  CAS  Google Scholar 

  35. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) J Mater Phys Chem 2:1–8

    Google Scholar 

  36. Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Nanoscale 9:1763–1786

    Article  CAS  Google Scholar 

  37. Kim U J, Eom S H, Wada M (2010) olym Degrad Stab 95 :778–781

  38. Sonia A, Dasan KP (2013) Carbohydr Polym 92:668–674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by Mesrs of Algeria, under the research project, PRFU (A16N01UN350120180002), the author would like to acknowledges, Biocomposite Technology Laboratory, INTROP, Universiti Putra Malaysia, for providing the necessary facilities and encouragement for the accomplishment of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachaichi, A., Kouini, B., Kian, L.K. et al. Extraction and Characterization of Microcrystalline Cellulose from Date Palm Fibers using Successive Chemical Treatments. J Polym Environ 29, 1990–1999 (2021). https://doi.org/10.1007/s10924-020-02012-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02012-2

Keywords

Navigation