Skip to main content
Log in

A New Ozonated Cassava Film with the Addition of Cellulose Nanofibres: Production and Characterization of Mechanical, Barrier and Functional Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study cassava starch modified by ozone technology and cellulose nanofibres were used to produce films. These nanocomposites were produced by casting technique using non-modified and ozonated cassava starches, glycerol and, water reinforced with cellulose nanofibres (NCF) at 1%, 2%, and 5%. Films were characterized in terms of mechanical, barrier and functional properties, morphology, opacity and the sealing ability. In general, ozonated cassava films result in increased mechanical properties, water vapour permeability, and hydrophilicity. The addition of cellulose nanofibres, in certain conditions, improved these properties due to the NCF dispersion in the polymeric matrix. However, the formation of agglomerates in higher concentrations (2% and 5%) was visible by SEM images. In specific, the addition of 1% of NCF to the 60 min ozonated film increased the Tensile Strength and the Young Modulus in ~ 117% and ~ 137%, respectively, and decreased the water vapour permeability in ~ 47%, in comparison to the non-modified film without NCF. In conclusion, the addition of NCF to ozonated cassava films improved their properties aiming specific application showing to be an interesting alternative for packaging industries in different areas.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Area (m2)

E :

Young’s Modulus (MPa)

m :

Mass (g)

NCF:

Cellulose nanofibres

p :

Pressure (kPa)

t :

Time (h)

TS :

Tensile strength (MPa)

WVP :

Water vapour permeability (g mm/mday kPa)

x :

Thickness (µm or mm)

Y:

Opacity (%)

b :

Black standard

w:

White standard

Δ:

Delta

ε:

Strain (%)

References

  1. Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54(2):163–174. https://doi.org/10.1080/10408398.2011.578765

    Article  CAS  PubMed  Google Scholar 

  2. Röper H (2002) Renewable raw materials in Europe—industrial utilisation of starch and sugar. Starch/Staerke 54(3–4):89

    Article  Google Scholar 

  3. La Fuente CIA, de Souza AT, Tadini CC, Augusto PED (2019) Ozonation of cassava starch to produce biodegradable films. Int J Biol Macromol 141:713–720. https://doi.org/10.1016/j.ijbiomac.2019.09.028

    Article  CAS  PubMed  Google Scholar 

  4. La Fuente CIA, Castanha N, Maniglia BC, Tadini CC, Augusto PED (2020) Biodegradable films produced from ozone-modified potato starch. J Packag Technol Resdoi. https://doi.org/10.1007/s41783-020-00082-0

    Article  Google Scholar 

  5. Carvalho BKCC, Pereira PHF, Cioffi MOH (2017) Effect of acid hydrolysis conditions on the degradation properties of cellulose from Imperata brasiliensis fibers. Procedia Eng. https://doi.org/10.1016/j.proeng.2017.07.035

    Article  Google Scholar 

  6. Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biol Macromol 112:442–447. https://doi.org/10.1016/j.ijbiomac.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  7. Mok CF, Ching YC, Muhamad F, Abu Osman NA, Singh R (2017) Poly(vinyl alcohol)-α-chitin composites reinforced by oil palm empty fruit bunch fiber-derived nanocellulose. Int J Polym Anal Charact 22(4):294–304. https://doi.org/10.1080/1023666X.2017.1288345

    Article  CAS  Google Scholar 

  8. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  9. Hietala M, Mathew AP, Oksman K (2012) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956. https://doi.org/10.1016/j.eurpolymj.2012.10.016

    Article  CAS  Google Scholar 

  10. Da Silva JBA et al (2015) Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Mater Today Proc 2(1):200–207. https://doi.org/10.1016/j.matpr.2015.04.022

    Article  Google Scholar 

  11. Da Silva JBA, Pereira FV, Druzian JI (2012) Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. J Food Sci 77(6):14–19. https://doi.org/10.1111/j.1750-3841.2012.02710.x

    Article  CAS  Google Scholar 

  12. Kampangkaew S, Thongpin C, Santawtee O (2014) The synthesis of cellulose nanofibers from Sesbania Javanica for filler in thermoplastic starch. Energy Procedia 56:318–325. https://doi.org/10.1016/j.egypro.2014.07.163

    Article  CAS  Google Scholar 

  13. Meneguin AB, Ferreira Cury BS, dos Santos AM, Franco DF, Barud HS, Da Silva Filho EC (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023. https://doi.org/10.1016/j.carbpol.2016.10.062

    Article  CAS  PubMed  Google Scholar 

  14. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  15. Lima DC, Castanha N, Maniglia BC, Matta MD Jr., La Fuente CIA, Augusto PED (2020) Ozone processing of cassava starch. Ozone Sci Eng 9512:1–18. https://doi.org/10.1080/01919512.2020.1756218

    Article  CAS  Google Scholar 

  16. Llanos JHR, Tadini CC (2017) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382. https://doi.org/10.1016/j.ijbiomac.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  17. ASTM International 2012 ASTM Standard D 882-12 Standard test method for tensile properties of thin plastic sheeting. ASTM Stand 1–11

  18. ASTM (2013) StandardTest methods for water vapor transmission of materials E96/E96M. Annu B ASTM Stand. https://doi.org/10.1520/E0096

    Article  Google Scholar 

  19. ASTM International 2013 ASTM D7334-08: Standard practice for surface wettability of coatings, substrates and pigments by advancing contact angle measurement: active standard. Am Soc Test Mater 8:1–3. https://doi.org/10.1520/D7334-08R13.2

  20. Savaderkar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:145–151. https://doi.org/10.1016/j.carbpol.2012.02.063

    Article  CAS  Google Scholar 

  21. Börjesson M, and Westman G (2016) Crystalline nanocellulose—preparation, modification, and properties chap. 7

  22. Robles E, Labidi J, Halász K, Csóka L (2017) Key issues in reinforcement involving nanocellulose. Cell Nanofibre Compos Prod Prop Appl. https://doi.org/10.1016/B978-0-08-100957-4.00018-8

    Article  Google Scholar 

  23. Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT-Food Sci Technol 54(2):346–352. https://doi.org/10.1016/j.lwt.2013.06.017

    Article  CAS  Google Scholar 

  24. Nair SS, Zhu J, Deng Y, Ragauskas AR (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2(1):1–7. https://doi.org/10.1186/s40508-014-0023-0

    Article  CAS  Google Scholar 

  25. Slavutsky AM, Bertuzzi M (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61. https://doi.org/10.1016/j.carbpol.2014.03.049

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Changhua L, Chang PR, Cao X, Anderson D (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615. https://doi.org/10.1016/j.carbpol.2008.11.030

    Article  CAS  Google Scholar 

  27. Li Y et al (2015) Nanocellulose as green dispersantfor two-dimensional energy materials. Nano Energy 13:346–354. https://doi.org/10.1016/j.nanoen.2015.02.015

    Article  CAS  Google Scholar 

  28. Phanthong S, Reubroycharoen P, Kongparakul P, Samart C, Wang Z, Hao X (2018) Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.02.066

    Article  PubMed  Google Scholar 

  29. Visakh PM, Thomas S, Oksman K, Mathew AP (2011) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Composites Part A  43(4):735–741. https://doi.org/10.1016/j.compositesa.2011.12.015

    Article  CAS  Google Scholar 

  30. Shayan E, Fathi M, Kadiva M (2019) Production and characterization of chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to enhance edible film’s properties. Food Packag Shelf Life 22:1100387. https://doi.org/10.1016/j.fpsl.2019.100387

    Article  Google Scholar 

  31. Santacruz S, Rivadeneira C, Castro M (2015) Edible films based on starch and chitosan. Effect of starch source andconcentration, plasticizer, surfactant’s hydrophobic tail andmechanical treatment. Food Hydrocoll 49:89–94. https://doi.org/10.1016/j.foodhyd.2015.03.019

    Article  CAS  Google Scholar 

  32. Khoo RZ, Ismal H, Chow WS (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chem. https://doi.org/10.1016/j.proche.2016.03.086

    Article  Google Scholar 

  33. Trifol J, Plackett D, Sillard C, Szabo P, Bras J, Daugaard AE (2016) Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Int 65(8):988–995. https://doi.org/10.1002/pi.5154

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the National Council for Scientific and Technological Development (CNPq, Brazil) the productivity grants of Tadini (306414/2017-1) and Augusto (306557/2017-7), and for funding the project of La Fuente (429043/2018-0). Moreover, the São Paulo Research Foundation (FAPESP, Brazil) for the B.Sc. scholarship of Souza (2018/24291-8); and for the post-doctoral fellowship of La Fuente (2017/05307-8).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CIALF, PEDA; Methodology: CIALF, ATS; Validation: CIALF; ATS; Formal analysis and investigation: CIALF, ATS; Resources: CCT, PEDA; Data Curation and writing—original draft preparation: CIALF; Writing—review and editing: PEDA, CCT; Visualization: CIALF; ATS; Supervision: CCT, PEDA; Project administration: CIALF, PEDA; Funding acquisition: CIALF, CCT, PEDA.

Corresponding author

Correspondence to Carla I. A. La Fuente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A patent related with this work was filed (BR1020190112166).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Fuente, C.I.A., de Souza, A.T., Tadini, C.C. et al. A New Ozonated Cassava Film with the Addition of Cellulose Nanofibres: Production and Characterization of Mechanical, Barrier and Functional Properties. J Polym Environ 29, 1908–1920 (2021). https://doi.org/10.1007/s10924-020-02013-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02013-1

Keywords

Navigation