Skip to main content
Log in

Aggregation and Aggregate Strength of Microscale Plastic Particles in the Presence of Natural Organic Matter: Effects of Ionic Valence

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Considering the recent plastic loads in water bodies we studied the aggregation, charging, and aggregate strength of polyethylene microsphere (PEM) particles in the presence of natural organic matter (NOM) as a function of KCl and CaCl2 concentrations. We used the Suwannee river humic acid (SRHA) as NOM and PEM as microplastics. The aggregation was triggered in the presence of CaCl2 solutions more effectively than KCl due to the divalent bridging and strong electrostatic attraction between Ca2+ and SRHA as well as between PEM particles. We found that the maximum aggregate strength around 1.87 nN in the presence of 100 mg/L SRHA at 0.5 M CaCl2 solution. The aggregate strength of PEM particles in the KCl solution was lower than that of CaCl2 solution, manifesting the more effective bridging flocculation and divalent bridging due to the Ca2+ ions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N (2018) Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ Sci Technol 52:1704–1724. https://doi.org/10.1021/acs.est.7b05559

    Article  CAS  PubMed  Google Scholar 

  2. Zhang K, Xiong X, Hu HJ, Wu CX, Bi YH, Wu YH, Zhou BS, Lam PKS, Liu JT (2017) Occurrence and characteristics of microplastic pollution in xiangxi bay of three gorges reservoir. China Environ Sci Technol 51:3794–3801. https://doi.org/10.1021/acs.est.7b00369

    Article  CAS  PubMed  Google Scholar 

  3. Browne MA, Galloway T, Thompson R (2009) Microplastic—an emerging contaminant of potential concern? Integrated Environmental Assessment Management 3(4):559–566. DOI:https://doi.org/10.1002/ieam.5630030412

    Article  Google Scholar 

  4. McDevitt JP, Criddle CS, Morse M, Hale RC, Bott CB, Rochman CM (2017) Addressing the issue of microplastics in the wake of the microbead-free waters act-a new standard can facilitate improved policy. Environ Sci Technol 51(12):6611–6617. https://doi.org/10.1021/acs.est.6b05812

    Article  CAS  PubMed  Google Scholar 

  5. Wright SL, Kelly FJ (2017) Plastic and human health: A micro issue? Environ Sci Technol 51(12):6634–6647. https://doi.org/10.1021/acs.est.7b00423

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez E, Nowack B, Mitrano DM (2017) Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environ Sci Technol 51(12):7036–7046. https://doi.org/10.1021/acs.est.7b01750

    Article  CAS  PubMed  Google Scholar 

  7. Mattsson K, Hansson LA, Cedervall T (2015) Nano-plastics in the aquatic environment. Environ Sci Process Impacts 17(10):1712–1721. https://doi.org/10.1039/C5EM00227C

    Article  CAS  PubMed  Google Scholar 

  8. Reisser J, Shaw J, Wilcox C, Hardesty BD, Proietti M, Thums M, Pattiaratchi C (2013) Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways. PLoS One 8(11):e80466. https://doi.org/10.1371/journal.pone.0080466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  PubMed  Google Scholar 

  10. Rochman CM, Hoh E, Hentschel BT, Kaye S (2013) Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environmental Science Technology 47(3):1646–1654. https://doi.org/10.1021/es303700s

    Article  CAS  PubMed  Google Scholar 

  11. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: A review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  PubMed  Google Scholar 

  12. Cai L, Hu L, Shi H, Ye J, Zhang Y, Kim H (2018) Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere 197:142–151. https://doi.org/10.1016/j.chemosphere.2018.01.052

    Article  CAS  PubMed  Google Scholar 

  13. Jemec A, Horvat P, Kunej U, Bele M, Krzan A (2016) Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ Pollut 219:201–209. https://doi.org/10.1016/j.envpol.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  14. Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112(1–2):39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025

    Article  CAS  PubMed  Google Scholar 

  15. Wang F, Zhang M, Sha W, Wang Y, Hao H, Dou Y, Li Y (2020) Sorption behavior and mechanisms of organic contaminants to nano and microplastics. Molecules. https://doi.org/10.3390/molecules25081827

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fred-Ahmadu OH, Bhagwat G, Oluyoye I, Benson NU, Ayejuyo OO, Palanisami T (2020) Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci Total Environ 706:135978. https://doi.org/10.1016/j.scitotenv.2019.135978

    Article  CAS  PubMed  Google Scholar 

  17. Guo X, Wang X, Zhou X, Kong X, Tao S, Xing B (2012) Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition. Environ Sci Technol 46:7252–7259. https://doi.org/10.1021/es301386z

    Article  CAS  PubMed  Google Scholar 

  18. Town RM, van Leeuwen HP, Blust R, Turner A, Holmes LA (2015) Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media. Front Chem 6:600–610. https://doi.org/10.1071/EN14143

    Article  CAS  Google Scholar 

  19. Hüffer T, Metzelder F, Sigmund G, Slawek S, Schmidt TC, Hofmann T (2019) Polyethylene microplastics influence the transport of organic contaminants in soil. Sci Total Environ 657:242–247. https://doi.org/10.1016/j.scitotenv.2018.12.047

    Article  CAS  PubMed  Google Scholar 

  20. Town RM, van Leeuwen HP, Blust R (2018) Biochemodynamic features of metal ions bound by micro- and nano-plastics in aquatic media. Front Chem 6:627. https://doi.org/10.3389/fchem.2018.00627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li P, Zou X, Wang X, Su M, Chen C, Sun X, Zhang H (2020) A preliminary study of the interactions between microplastics and citrate-coated silver nanoparticles in aquatic environments. J Hazard Mater 385:5, 121601. https://doi.org/10.1016/j.jhazmat.2019.121601

    Article  CAS  PubMed  Google Scholar 

  22. Singh N, Tiwari E, Khandelwal N, Darbha GK (2019) Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals. Environ Sci Nano 6:2968–2976. https://doi.org/10.1039/c9en00557a

    Article  CAS  Google Scholar 

  23. Li S, Liu H, Gao R, Abdurahman A, Dai J, Zeng F (2018) Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter. Environ Pollut 237:126–132. https://doi.org/10.1016/j.envpol.2018.02.042

    Article  CAS  PubMed  Google Scholar 

  24. Shams M, Alam I, Chowdhury I (2020) Aggregation and stability of nanoscale plastics in aquatic environment. Water Res 171:115401. https://doi.org/10.1016/j.watres.2019.115401

    Article  CAS  PubMed  Google Scholar 

  25. Lagarde F, Olivier O, Zanella M, Daniel P, Hiard S, Caruso A (2016) Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ Pollut 215:331–339. https://doi.org/10.1016/j.envpol.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Adeleye AS, Huang Y, Li F, Keller AA (2015) Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv Colloid Interface Sci 226:24–36. https://doi.org/10.1016/j.cis.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  27. Lin W, Kobayashi M, Skarba M, Mu C, Galletto P, Borkovec M (2006) Heteroaggregation in binary mixtures of oppositely charged colloidal particles. Langmuir 22:1038–1047. https://doi.org/10.1021/la0522808

    Article  CAS  PubMed  Google Scholar 

  28. Trefalt G, Ruiz-Cabello FJM, Borkovec M (2014) Interaction forces, heteroaggregation, and deposition involving charged colloidal particles. J Phys Chem B 118:6346–6355. https://doi.org/10.1021/jp503564p

    Article  CAS  PubMed  Google Scholar 

  29. Deshiikan SR, Papadopoulos KD (1997) Visual microscopic studies on hetero-aggregation and selective aggregation. Colloid Polym Sci 275:440–448. https://doi.org/10.1007/s003960050102

    Article  CAS  Google Scholar 

  30. Cao T, Sugimoto T, Szilagyi I, Trefalt G, Borkovec M (2017) Heteroaggregation of oppositely charged particles in the presence of multivalent ions. Phys Chem Chem Phys 19:15160–15171. https://doi.org/10.1039/c7cp01955f

    Article  CAS  PubMed  Google Scholar 

  31. Oriekhova O, Stoll S (2018) Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environ Sci Nano 5:792–799. https://doi.org/10.1039/c7en01119a

    Article  CAS  Google Scholar 

  32. de Haan WP, Sanchez-Vidal A, Canals M (2019) Floating microplastics and aggregate formation in the Western Mediterranean Sea. Mar Pollut Bull 140:523–535. https://doi.org/10.1016/j.marpolbul.2019.01.053

    Article  CAS  PubMed  Google Scholar 

  33. Hakim A, Suzuki T, Kobayashi M (2019) Strength of Humic Acid Aggregates: Effects of Divalent Cations and Solution pH. ACS Omega. https://doi.org/10.1021/acsomega.9b00124

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7:1–6. https://doi.org/10.1038/s41598-017-01594-7

    Article  CAS  Google Scholar 

  35. Kobayashi M (2004) Breakup and strength of polystyrene latex flocs subjected to a converging flow. Colloids Surfaces A Physicochem Eng Asp 235:73–78. https://doi.org/10.1016/j.colsurfa.2004.01.008

    Article  CAS  Google Scholar 

  36. Hakim A, Kobayashi M (2019) Charging, aggregation, and aggregate strength of humic substances in the presence of cationic surfactants: Effects of humic substances hydrophobicity and surfactant tail length. Colloids Surfaces A Physicochem Eng Asp 577:175–184. https://doi.org/10.1016/j.colsurfa.2019.05.071

    Article  CAS  Google Scholar 

  37. Hakim A, Kobayashi M (2018) Aggregation and charge reversal of humic substances in the presence of hydrophobic monovalent counter-ions: Effect of hydrophobicity of humic substances. Colloids Surfaces A Physicochem Eng Asp 540:1–10. https://doi.org/10.1016/j.colsurfa.2017.12.065

    Article  CAS  Google Scholar 

  38. Kobayashi M (2005) Strength of natural soil flocs. Water Res 39:3273–3278. https://doi.org/10.1016/j.watres.2005.05.037

    Article  CAS  PubMed  Google Scholar 

  39. Blaser S (2000) Break-up of flocs in contraction and swirling flows. Colloids Surf A 166:215–223. https://doi.org/10.1016/S0927-7757(99)00450-1

    Article  CAS  Google Scholar 

  40. Blaser S (2000) Flocs in shear and strain flows. J Colloid Interface Sci 225:273–284. https://doi.org/10.1006/jcis.1999.6671

    Article  CAS  PubMed  Google Scholar 

  41. Blaser S (2002) Forces on the surfaces of small ellipsoidal particles immersed in a linear flow field. Chem Eng Sci. https://doi.org/10.1016/S0009-2509(01)00389-X

    Article  Google Scholar 

  42. Moriguchi S (1987) Mathematical Formulas (Sugaku Koshikishu). Iwanami Shoten, Tokyo (in Japanese)

    Google Scholar 

  43. Kobayashi M (2008) Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling. Colloid Polym Sci 286(8):935–940. DOI:https://doi.org/10.1007/s00396-008-1851-9

    Article  CAS  Google Scholar 

  44. Nishiya M, Sugimoto T, Kobayashi M (2016) Electrophoretic mobility of carboxyl latex particles in the mixed solution of 1:1 and 2:1 electrolytes or 1:1 and 3:1 electrolytes: Experiments and modelling. Colloids Surfaces A Physicochem Eng Asp 504:219–227. https://doi.org/10.1016/j.colsurfa.2016.05.045

    Article  CAS  Google Scholar 

  45. Hakim A, Nishiya M, Kobayashi M (2016) Charge reversal of sulfate latex induced by hydrophobic counterion: effects of surface charge density. Colloid Polym Sci 294:1671–1678. https://doi.org/10.1007/s00396-016-3931-6

    Article  CAS  Google Scholar 

  46. Beneš P, Paulenová M (1973) Surface charge and adsorption properties of polyethylene in aqueous solutions of inorganic electrolytes - I. Streaming potential measurement. Kolloid-Zeitschrift Zeitschrift für Polym 251:766–771. https://doi.org/10.1007/BF01499104

    Article  Google Scholar 

  47. Hua Z, Tang Z, Bai X, Zhang J, Yu L, Cheng H (2015) Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments. Environ Pollut 205:161–169. https://doi.org/10.1016/j.envpol.2015.05.039

    Article  CAS  PubMed  Google Scholar 

  48. Peng YH, Tsai YC, Hsiung CE, Lin YH, Shih YH (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J Hazard Mater 322:348–356. https://doi.org/10.1016/j.jhazmat.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  49. Jiang Y, Raliya R, Liao P, Biswas P, Fortner JD (2017) Graphene oxides in water: assessing stability as a function of material and natural organic matter properties. Environmental Science: Nano 4(7):1484–1493. https://doi.org/10.1039/C7EN00220C

    Article  CAS  Google Scholar 

  50. Abe T, Kobayashi S, Kobayashi M (2011) Aggregation of colloidal silica particles in the presence of fulvic acid, humic acid, or alginate: Effects of ionic composition. Colloids Surf A 379(1–3):21–26. https://doi.org/10.1016/j.colsurfa.2010.11.052

    Article  CAS  Google Scholar 

  51. Terashima M, Fukushima M, Tanaka S (2004) Influence of pH on the surface activity of humic acid: micelle-like aggregate formation and interfacial adsorption. Colloids Surf A 247:77–83. https://doi.org/10.1016/j.colsurfa.2004.08.028

    Article  CAS  Google Scholar 

  52. Zhu S, Avadiar L, Leong YK (2016) Yield stress- and zeta potential-pH behaviour of washed α-Al2O3 suspensions with relatively high Ca(II) and Mg(II) concentrations: Hydrolysis product and bridging. Int J Miner Process 148:1–8. https://doi.org/10.1016/j.minpro.2016.01.004

    Article  CAS  Google Scholar 

  53. Gregory J, Barany S (2011) Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci 169:1–12. https://doi.org/10.1016/j.cis.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  54. Carpineti M, Ferri F, Giglio M, Paganini E, Perini U (1990) Salt-induced fast aggregation of polystyrene latex. Phys Rev A 42:7347–7354. https://doi.org/10.1103/PhysRevA.42.7347

    Article  CAS  PubMed  Google Scholar 

  55. Oles V (1992) Shear-induced aggregation and breakup of polystyrene latex particles. J Colloid Interface Sci 154:351–358. https://doi.org/10.1016/0021-9797(92)90149-G

    Article  CAS  Google Scholar 

  56. Lee H, Shim WJ, Kwon JH (2014) Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci Total Environ 470–471:1545–1552. https://doi.org/10.1016/j.scitotenv.2013.08.023

    Article  CAS  PubMed  Google Scholar 

  57. Stefano CD, Foti C, Gianguzza A, Sammartano S (1998) The single salt approximation for the major components of seawater: association and acid–base properties. Chem Speciat Bioavailab 10(1):27–30. DOI:https://doi.org/10.3184/095422998782775862

    Article  Google Scholar 

  58. De Stefano C, Foti C, Gianguzza A, Rigano C, Sammartano S (1994) The Equilibrium Studies in Natural Fluids. The Use of Synthetic Sea Waters and Other Media as Background Salts. Ann Chim (Rome) 84:159–175

    Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support of the research received no external funding JSPS KAKENHI (19H03070 and 16H06382). The authors are also thankful to University of Tsukuba, Japan and University of Chittagong, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azizul Hakim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakim, A., Kobayashi, M. Aggregation and Aggregate Strength of Microscale Plastic Particles in the Presence of Natural Organic Matter: Effects of Ionic Valence. J Polym Environ 29, 1921–1929 (2021). https://doi.org/10.1007/s10924-020-01985-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01985-4

Keywords

Navigation