Skip to main content
Log in

Thermodynamic Descriptions of the Co–Zr and Co–Fe–Zr Systems

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The Co–Fe–Zr system and its Co–Zr subsystem were optimized using the CALculation of PHAse Diagram (CALPHAD) approach. The substitutional solution model was used for describing the phases liquid, fcc_A1, bcc_A2 and hcp_A3. Two Laves phases were modeled as (Co,Fe,Zr)2(Co,Fe,Zr)1, and the phases CoFe and CoZr with the bcc_B2 crystal structure were described as the ordered one of bcc_A2 in the formula (Co,Fe,Va,Zr)0.5(Co,Fe,Va,Zr)0.5Va3. With limited solubility ranges, all other phases were treated as the line compounds (Co,Fe)mZrn. An excellent agreement between the reported and calculated results was reached. The reliable thermodynamic parameters of the Co–Fe–Zr system were acquired, which can be well applied to various thermodynamic calculations and materials design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Wang, R. Li, C. Ding, W. Tang, Y. Wang, S. Xu, R. Yu, and Y. Wu, F. Wang, R. Li, C. Ding, W. Tang, Y. Wang, S. Xu, R. Yu, and Y. Wu, Recent Progress On The Hydrogen Storage Properties of ZrCo-Based Alloys Applied in International Thermonuclear Experimental Reactor (ITER), Prog. Nat. Sci. Mater., 2017, 27(1), p 58–65

    Google Scholar 

  2. R.A. Jat, R. Singh, S.C. Parida, A. Das, R. Agarwal, S.K. Mukerjee, and K.L. Ramakumar, R.A. Jat, R. Singh, S.C. Parida, A. Das, R. Agarwal, S.K. Mukerjee, and K.L. Ramakumar, Structural and Hydrogen Isotope Storage Properties of Zr–Co–Fe Alloy, Int. J. Hydrogen Energy, 2015, 40(15), p 5135–5143

    Google Scholar 

  3. C. Xie, W. Li, J. Luo, Y. Yang, and S. Li, C. Xie, W. Li, J. Luo, Y. Yang, and S. Li, Development of MAgnetic and Ductile Fe-Co-Zr-Mo-Cr Glassy Alloy Without Metalloid Elements, J. Non-Cryst. Solids, 2018, 482, p 213–216

    ADS  Google Scholar 

  4. P. Yu, J.Z. Zhang, and L. Xia, P. Yu, J.Z. Zhang, and L. Xia, Fe87Zr7B4Co2 Amorphous Alloy with Excellent Magneto-caloric Effect Near Room Temperature, Intermetallics, 2018, 95, p 85–88

    Google Scholar 

  5. A.P. Srivastava, D.A. Babu, A. Verma, A.A. Deshmukh, A. Kaushal, and U.A. Palikundwar, Understanding the Effect of Hf on Thermal Stability and Glass Forming Ability of Fe572Co308Zr7-xHfxB4Cu1 (x = 3, 5, and 7) Metallic Glasses, J. Non-Cryst. Solids, 2019. https://doi.org/10.1016/j.jnoncrysol.2018.09.016

    Article  Google Scholar 

  6. K. Kotynia, P. Pawlik, K. Filipecka, and J. Filipecki, K. Kotynia, P. Pawlik, K. Filipecka, and J. Filipecki, Calorimetric and Structural Analysis of the Zr–Fe–Co–B–Mo–W Amorphous Alloys Doped With Gadolinium, J. Alloy. Compd., 2020, 842, p 155940

    Google Scholar 

  7. P. Gong, S. Wang, F. Li, and X. Wang, P. Gong, S. Wang, F. Li, and X. Wang, Kinetics of Glass Transition and Crystallization of a Zr40Hf10Ti4Y1Al10Cu25Ni7Co2Fe1 Bulk Metallic Glass with High Mixing Entropy, Metall. Mater. Trans. A, 2018, 49, p 2918–2928

    Google Scholar 

  8. J. Liu, Z. Xing, H. Wang, X. Cui, G. Jin, and B. Xu, J. Liu, Z. Xing, H. Wang, X. Cui, G. Jin, and B. Xu, Microstructure and Fatigue Damage Mechanism of Fe–Co–Ni–Al–Ti–Zr High-entropy Alloy Film by Nanoscale Dynamic Mechanical Analysis, Vacuum, 2019, 159, p 516–523

    ADS  Google Scholar 

  9. C. Chen, H. Zhang, Y. Fan, W. Zhang, R. Wei, S. Guan, T. Wang, B. Kong, T. Zhang, and F. Li, C. Chen, H. Zhang, Y. Fan, W. Zhang, R. Wei, S. Guan, T. Wang, B. Kong, T. Zhang, and F. Li, Crystallization and Corrosion Resistance of Zr–Ti–Y–Al–Cu–Ni–Co–Fe Complex Multi-component Bulk Metallic Glasses, Intermetallics, 2020, 118, p 106688

    Google Scholar 

  10. S.M. Hoque, S.K. Makineni, A. Pal, S.A. Rahman, S. Hossain, R. Islam, P. Ayyub, and K. Chattopadhyay, S.M. Hoque, S.K. Makineni, A. Pal, S.A. Rahman, S. Hossain, R. Islam, P. Ayyub, and K. Chattopadhyay, Two Phase Ferromagnetic Composites in Co-Zr and Co-Zr-Fe Systems Containing Anti-Phase Domain Imparting Very High Strength, Mater. Res. Bull., 2018, 97, p 61–70

    Google Scholar 

  11. C.P. Wang, Y. Yu, H.H. Zhang, H.F. Hu, and X.J. Liu, C.P. Wang, Y. Yu, H.H. Zhang, H.F. Hu, and X.J. Liu, Experimental Determination of the Phase Equilibria in the Co–Fe–Zr Ternary System, J. Alloy. Compd., 2011, 509(13), p 4470–4477

    Google Scholar 

  12. J. Wang, X. Lu, N. Zhu, and W. Zheng, J. Wang, X. Lu, N. Zhu, and W. Zheng, Thermodynamic and Diffusion kinetic Studies of the Fe-Co System, Calphad, 2017, 58, p 82–100

    Google Scholar 

  13. P. Agraval, L. Dreval, M. Turchanin, and T. Velikanova, P. Agraval, L. Dreval, M. Turchanin, and T. Velikanova, Thermodynamic Assessment of the Co-Zr System, J. Phase Equilib. Diffus., 2020, 41, p 491–499

    Google Scholar 

  14. I. Saenko, A. Kupravaa, A. Udovsky, and O. Fabrichnaya, I. Saenko, A. Kupravaa, A. Udovsky, and O. Fabrichnaya, Heat Capacity Measurement of Zr2Fe and Thermodynamic Re-assessment of the Fe–Zr System, Calphad, 2019, 66, p 101625

    Google Scholar 

  15. A.F. Guillermet, A.F. Guillermet, Critical Evaluation of the Thermodynamic Properties of the Iron-Cobalt System, High Temp. High Press., 1987, 19(5), p 477–499

    Google Scholar 

  16. I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida, I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida, Phase Equilibria in the Fe–Co Binary System, Acta Mater., 2002, 50(2), p 379–393

    ADS  Google Scholar 

  17. M.A. Turchanin, L.A. Dreval, A.R. Abdulov, and P.G. Agraval, M.A. Turchanin, L.A. Dreval, A.R. Abdulov, and P.G. Agraval, Mixing Enthalpies of Liquid Alloys and Thermodynamic Assessment of the Cu–Fe–Co System, Powd. Metall. Met. Ceram., 2011, 50(1–2), p 98–116

    Google Scholar 

  18. M.F. Collins, and J.B. Forsyth, M.F. Collins, and J.B. Forsyth, The Magnetic Moment Distribution in Some Transition Metal Alloys, Philos. Mag., 1963, 8(87), p 401–410

    ADS  Google Scholar 

  19. D.I. Bardos, D.I. Bardos, Mean Magnetic Moments in bcc Fe-Co Alloys, J. Appl. Phys., 1969, 40(3), p 1371–1372

    ADS  Google Scholar 

  20. M. Kogachi, N. Tadachi, H. Kohata, and H. Ishibashi, M. Kogachi, N. Tadachi, H. Kohata, and H. Ishibashi, Magnetism and Point Defect in B2-type CoFe Alloys, Intermetallics, 2005, 13(5), p 535–542

    Google Scholar 

  21. T. Chart, and F. Putland, T. Chart, and F. Putland, A Thermodynamically Calculated Phase Diagram for the Co–Cr–Zr System, Calphad, 1979, 3(1), p 9–18

    Google Scholar 

  22. N. Saunders, and A.P. Miodownik, N. Saunders, and A.P. Miodownik, Thermodynamic Aspects of Amorphous Phase Formation, J. Mater. Res., 1986, 1(1), p 38–46

    ADS  Google Scholar 

  23. J. Bratberg, and B. Jansson, J. Bratberg, and B. Jansson, Thermodynamic Evaluation of the c-co-w-hf-zr System for Cemented Carbides Applications, J. Phase Equilib. Diffus., 2006, 27(3), p 213–219

    Google Scholar 

  24. X.J. Liu, H.H. Zhang, C.P. Wang, and K. Ishida, X.J. Liu, H.H. Zhang, C.P. Wang, and K. Ishida, Experimental Determination and Thermodynamic Assessment of the Phase Diagram in the Co–Zr System, J. Alloy. Compd., 2009, 482(1–2), p 99–105

    Google Scholar 

  25. Yu.O. Esin, OYu. Sidorov, M.G. Valishev, and P.V. Geld, Yu.O. Esin, OYu. Sidorov, M.G. Valishev, and P.V. Geld, The Enthalpies of Formation of Molten Zirconium Alloys with Cobalt, TVT, 1989, 27(2), p 394–396

    Google Scholar 

  26. R. Lück, H. Wang, and B. Predel, R. Lück, H. Wang, and B. Predel, Calorimetric Determination of the Mixing Enthalpy of Liquid Cobal-Zirconium Alloys, Z. Anorg. Allg. Chem., 1993, 619(3), p 447–452

    Google Scholar 

  27. M.A. Turchanin, and P.G. Agraval, M.A. Turchanin, and P.G. Agraval, Enthalpies of Mixing of Titanium, Zirconium and Hafnium Liquid Alloys with Cobalt, Rasplavy, 2002, 2, p 8–16

    Google Scholar 

  28. A. Durga, and K.C. Hari Kumar, A. Durga, and K.C. Hari Kumar, Thermodynamic Optimization of the Co–Zr System, Calphad, 2010, 34(2), p 200–205

    Google Scholar 

  29. Kosorukova, T., Agraval, P., Ivanchenko, V., Turchanin, M, (2010) Experimental reinvestigations and thermodynamic assessment of the Co–Zr system, XI International Conference on Crystal Chemistry of Intermetallic Compounds, May 30–June 2, National University of Lviv, p 52

  30. O.L. Semenova, V.M. Petyukh, and O.S. Fomichev, O.L. Semenova, V.M. Petyukh, and O.S. Fomichev, The Constitution of Co–Zr Phase Diagram, Powder Metall. Met. Ceram., 2016, 54(9–10), p 583–589

    Google Scholar 

  31. W.H. Pechin, D.E. Williams, and W.L. Larsen, W.H. Pechin, D.E. Williams, and W.L. Larsen, The Zirconium-Cobalt Alloy System, Trans. ASM, 1964, 57, p 464–473

    Google Scholar 

  32. S.K. Bataleva, V.V. Kuprina, V.V. Burnasheva, V.Y. Markiv, G.N. Ronami, and S.M. Kurnetsova, S.K. Bataleva, V.V. Kuprina, V.V. Burnasheva, V.Y. Markiv, G.N. Ronami, and S.M. Kurnetsova, Phase Diagram of Cobalt– Zirconium System, Moscow Univ. Chem. Bull., 1970, 25(5), p 33–36

    Google Scholar 

  33. J.C. Gachon, and J. Hertz, J.C. Gachon, and J. Hertz, Enthalpies of Formation of Binary Phases in the Systems FeTi, FeZr, CoTi, CoZr, NiTi, and NiZr, by Direct Reaction Calorimetry, Calphad, 1983, 7(1), p 1–12

    Google Scholar 

  34. Q. Guo, and O.J. Kleppa, Q. Guo, and O.J. Kleppa, Standard Enthalpies Of Formation Of Some Alloys Formed Between Group IV Elements and Group VIII Elements, Determined by High-Temperature Direct Synthesis Calorimetry II Alloys of (Ti, Zr, Hf) with (Co, Ni), J Alloy Compd, 1998, 269(1–2), p 181–186

    Google Scholar 

  35. P.A. Gomozov, Y.V. Zasypalov, and B.M. Mogutnov, P.A. Gomozov, Y.V. Zasypalov, and B.M. Mogutnov, Enthalpies of Formation Of Intermetallic Compounds with CsCl Structure (CoTi, CoZr, CoAl, NiTi), Russ. J. Phys. Chem., 1986, 60(8), p 1122–1124

    Google Scholar 

  36. R. Klein, P.A.G. O’Hare, and I. Jacob, R. Klein, P.A.G. O’Hare, and I. Jacob, Standard Molar Enthalpies of Formation of Alloys in the Pseudobinary System Zr(AlxCo1-x)2 at the Temperature 298.15 K, J Alloy Compd, 1997. https://doi.org/10.1016/S0925-8388(97)00226-0

    Article  Google Scholar 

  37. P.R. Ohodnicki Jr., N.C. Cates, D.E. Laughlin, M.E. McHenry, and M. Widom, P.R. Ohodnicki Jr., N.C. Cates, D.E. Laughlin, M.E. McHenry, and M. Widom, Ab Initio Theoretical Study Of Magnetization And Phase Stability of the (Fe Co, Ni)23B6 and (Fe Co, Ni)23Zr6 Structures of Cr23C6 and Mn23Th6 Prototypes, Phys. Rev. B, 2008, 78(14), p 144414

    ADS  Google Scholar 

  38. C. Servant, C. Gueneau, and I. Ansara, C. Servant, C. Gueneau, and I. Ansara, Experimental and Thermodynamic Assessment of the Fe–Zr System, J. Alloy. Compd., 1995, 220(1–2), p 19–26

    Google Scholar 

  39. M. Jiang, K. Oikawa, T. Ikeshoji, L. Wulff, and K. Ishida, M. Jiang, K. Oikawa, T. Ikeshoji, L. Wulff, and K. Ishida, Thermodynamic Calculations of Fe-Zr and Fe-Zr-C Systems, J. Phase Equilib., 2001, 22(4), p 406–417

    Google Scholar 

  40. F. Stein, G. Sauthoff, and M. Palm, F. Stein, G. Sauthoff, and M. Palm, Experimental Determination Of Intermetallic Phases, Phase Equilibria, And Invariant Reaction Temperatures in the Fe-Zr System, J. Phase Equilib., 2002, 23(6), p 480–494

    Google Scholar 

  41. C. Guo, Z. Du, C. Li, B. Zhang, and M. Tao, C. Guo, Z. Du, C. Li, B. Zhang, and M. Tao, Thermodynamic Description of the Al–Fe–Zr System, Calphad, 2008, 32(4), p 637–649

    Google Scholar 

  42. Y. Yang, L. Tan, H. Bei, and J.T. Busby, Y. Yang, L. Tan, H. Bei, and J.T. Busby, Thermodynamic Modeling And Experimental Study of the Fe–Cr–Zr System, J. Nucl. Mater., 2013, 441(1–3), p 190–202

    ADS  Google Scholar 

  43. H. Lu, N. Zou, X. Zhao, J. Shen, X. Lu, and Y. He, H. Lu, N. Zou, X. Zhao, J. Shen, X. Lu, and Y. He, Thermodynamic Investigation of the Zr-Fe-Nb System and its Applications, Intermetallics, 2017, 88, p 91–100

    Google Scholar 

  44. K. Ali, A. Arya, P.S. Ghosh, and G.K. Dey, K. Ali, A. Arya, P.S. Ghosh, and G.K. Dey, A First Principles Study of Cohesive, Elastic and Electronic Properties Of Binary Fe–Zr Intermetallics, Comp. Mater. Sci., 2016, 112, p 52–66

    Google Scholar 

  45. K. Ali, P.S. Ghosh, and A. Arya, K. Ali, P.S. Ghosh, and A. Arya, A DFT Study of Structural, Elastic and Lattice Dynamical Properties of Fe2Zr and FeZr2 Intermetallics, J. Alloy. Compd., 2017, 723(5), p 611–619

    Google Scholar 

  46. B.O. Mukhamedov, I. Saenko, A.V. Ponomareva, M.J. Kriegel, A. Chugreev, A. Udovsky, O. Fabrichnaya, and I.A. Abrikosov, B.O. Mukhamedov, I. Saenko, A.V. Ponomareva, M.J. Kriegel, A. Chugreev, A. Udovsky, O. Fabrichnaya, and I.A. Abrikosov, Thermodynamic and Physical Properties Of Zr3fe And Zrfe2 Intermetallic Compounds, Intermetallics, 2019, 109, p 189–196

    Google Scholar 

  47. L.A. Panteleimonov, O.G. Burtseva, and V.V. Zubenko, L.A. Panteleimonov, O.G. Burtseva, and V.V. Zubenko, The Iron-Cobalt-Zirconium System, Moscow Univ. Chem. Bull., 1981, 36(6), p 89–90

    Google Scholar 

  48. I.V. Mishenina, E.F. Kazakova, E.M. Sokolovskaya, and N.Y. Tolmachiova, I.V. Mishenina, E.F. Kazakova, E.M. Sokolovskaya, and N.Y. Tolmachiova, Isothermal Cross-Section Of Phase Diagram of the Fe-Co-Zr System at 770 K, Moscow Univ. Chem. Bull., 1996, 51(1), p 52–54

    Google Scholar 

  49. SGTE Pure Elements (Unary) Database, Version 5.1, 〈https://www.thermocalc.com/academia/researchers/assessment-of-thermodynamic-data/〉, visited July 2 2020.

  50. O. Redlich, and A.T. Kister, O. Redlich, and A.T. Kister, Algebraic Representation Of Thermodynamic Properties and The Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345–348

    Google Scholar 

  51. M. Hillert, and M. Jarl, M. Hillert, and M. Jarl, A Model For Alloying Effects In Ferromagnetic Metals, Calphad, 1978, 2(3), p 227–238

    Google Scholar 

  52. N. Dupin, and I. Ansara, N. Dupin, and I. Ansara, On The Sublattice Formalism Applied to the B2 Phase, Z. Metallkd., 1999, 90(1), p 76–85

    Google Scholar 

  53. I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman, I. Ansara, N. Dupin, H.L. Lukas, and B. Sundman, Thermodynamic Assessment Of The Al–Ni System, J. Alloy. Compd., 1997, 247(1), p 20–30

    Google Scholar 

  54. B. Sundman, B. Jansson, and J.O. Andersson, B. Sundman, B. Jansson, and J.O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153–190

    Google Scholar 

Download references

Acknowledgment

This work was supported by Scientific Research Starting Foundation for Advanced Talents of Jiangxi University of Science and Technology (Grant No. 205200100063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Wang, H. Thermodynamic Descriptions of the Co–Zr and Co–Fe–Zr Systems. J. Phase Equilib. Diffus. 42, 77–90 (2021). https://doi.org/10.1007/s11669-020-00859-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00859-5

Keywords

Navigation