Skip to main content
Log in

Gene introgression in assessing fitness costs associated with phosphine resistance in the rusty grain beetle

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The current study investigates the fitness cost associated with phosphine resistance in the rusty grain beetle, Cryptolestes ferrugineus (Stephens), a problematic pest in the stored commodities that has developed strong resistance to fumigant phosphine. Three characterised insect strains: the susceptible (Ref-S), the strongly resistant (Ref-R), the introgressed resistant (Intro-R) and a segregating population (F25) derived from crossing the Ref-S and Ref-R strains were used in this study. Intro-R was developed by introgressing two phosphine resistance genes, cf_rph1 and cf_rph2 into Ref-S, aimed to reduce the influence of background genetic factors. Intro-R exhibited 592 × resistance to phosphine and homozygous for strong resistance allele, cf_rph2 (L73N). Two key fitness cost criteria, developmental time and fecundity, were assessed under optimal and suboptimal conditions (less favourable diet and low temperature). There was no significant difference in developmental time and fecundity between Ref-S and either Intro-R strain or F25 under optimal conditions. When challenged with a less favourable diet, cracked wheat + cracked sorghum (CW + CS), or exposed to a low temperature (22 °C), both Intro-R and Ref-S had similar developmental time and total numbers of F1 progeny, confirming the absence of significant fitness effects expressed in these conditions. Therefore, we conclude that strongly phosphine resistant C. ferrugineus are unlikely to incur potential fitness costs. This finding will have implications towards developing strategies to manage this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Afful E, Elliott B, Nayak MK, Phillips TW (2018) Phosphine resistance in North American field populations of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). J Econ Entomol 111:463–469

    Article  CAS  PubMed  Google Scholar 

  • Agrafioti P, Athanassiou CG, Nayak MK (2019) Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. J Stored Prod Res 82:40–47

    Article  Google Scholar 

  • Alyokhin AV, Ferro DN (1999) Relative fitness of Colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. J Econ Entomol 92:510–515

    Article  CAS  Google Scholar 

  • Arnaud L, Haubruge E, Gage MJG (2005) The malathion specific resistance gene confers a sperm competition advantage in tribolium castaneum. Funct Ecol 19:1032–1039

    Article  Google Scholar 

  • Ashby KR (1961) The population dynamics of Cryptolestes ferrugineus (Stephens) in flour and on Manitoba wheat. Bull Entomol Res 52:363–379

    Article  Google Scholar 

  • Bajracharya NS, Opit GP, Talley J, Gautam SG, Payton ME (2016) Assessment of fitness effects associated with phosphine resistance in Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). African Entomology 24:39–49

    Article  Google Scholar 

  • Benhalima H, Choudhry MQ, Mills KA, Price NR (2004) Phosphine resistance in stored-product insects collected from various grain facilities in Morocco. J Stored Prod Res 40:241–249

    Article  CAS  Google Scholar 

  • Berticat C, Boquien G, Raymond M, Chevillon C (2002) Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res Camb 79:41–47

    Article  CAS  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Patin AL, Sims MA, Meyer S, Liu YB, Dennehy TJ, Tabashnik BE (2001) Overwintering costs associated with resistance to transgenic cotton in the pink bollworm. J Econ Entomol 94:935–941

    Article  PubMed  Google Scholar 

  • Chaudhry MQ, Price NR (1992) Comparison of the oxidant damage induced by phosphine and the uptake and tracheal exchange of P-32 radiolabeled phosphine in the susceptible and resistant strains of Rhyzopertha dominica (F) (Coleoptera, Bostrychidae). Pestic Biochem Physiol 42:167–179

    Article  CAS  Google Scholar 

  • Collins PJ, Falk MG, Nayak MK, Emery RN, Holloway JC (2017) Monitoring resistance to phosphine in the lesser grain borer, Rhyzopertha dominica, in Australia: A national analysis of trends, storage types and geography in relation to resistance detections. J Stored Prod Res 70:25–36

    Article  Google Scholar 

  • Daglish GJ, Nayak MK, Pavic H (2014) Phosphine resistance in Sitophilus oryzae (L.) from eastern Australia: inheritance, fitness and prevalence. J Stored Prod Res 59:237–244

    Article  Google Scholar 

  • Daglish GJ, Nayak MK, Pavic H, Smith LW (2015) Prevalence and potential fitness cost of weak phosphine resistance in Tribolium castaneum (Herbst) in eastern Australia. J Stored Prod Res 61:54–58

    Article  Google Scholar 

  • Daglish GJ, Jagadeesan R, Nayak MK, McCulloch GJ, Singarayan VT, Walter GH (2020) The gene introgression approach and the potential cost of genes that confer strong phosphine resistance in red flour beetle. J. Econ. Entomol, Tribolium castaneum (Herbst). https://doi.org/10.1093/jee/toaa033

    Book  Google Scholar 

  • Dangal V, Huang F (2015) Fitness costs of Cry1F resistance in two populations of fall armyworm, Spodoptera frugiperda (J.E Smith), collected from Puerto Rico and Florida. J Invertebr Pathol 127:81–86

    Article  CAS  PubMed  Google Scholar 

  • Fields PG (1992) The control of stored-product insects and mites with extreme temperatures. J Stored Prod Res 28:89–118

    Article  Google Scholar 

  • Gassmann AJ, Carrière Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163

    Article  CAS  PubMed  Google Scholar 

  • GenStat Version 11 (2008) GenStat for windows, release 11.1. VSN International Ltd., Oxford

  • Holloway JC, Falk MG, Emery RN, Collins PJ, Nayak MK (2016) Resistance to phosphine in Sitophilus oryzae in Australia: A national analysis of trends and frequencies over time and geographic spread. J Stored Prod Res 69:129–137

    Article  Google Scholar 

  • Horikoshi RJ, Bernardi O, Bernardi D, Okuma DM, Farias JR, Miraldo LL, Amaral FS, Omoto C (2016) Near-isogenic cry1f-resistant strain of Spodoptera frugiperda (Lepidoptera: Noctuidae) to investigate fitness cost associated with resistance in Brazil. J Econ Entomol 109:854–859

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesan R, Nayak MK (2017) Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests. Pest Manag Sci 73:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Jagadeesan R, Fotheringham A, Ebert PR, Schlipalius DI (2013a) Rapid genome wide mapping of phosphine resistance loci by a simple regional averaging analysis in the red flour beetle, Tribolium castaneum. BMC Genomics 14:1471–2164

    Article  CAS  Google Scholar 

  • Jagadeesan R, Nayak MK, Dawson K, Byrne V, Collins PJ (2013b) Dietary media for mass rearing of rusty grain beetle, Cryptolestes ferrugineus (Stephens) and flat grain beetle, Cryptolestes pusillus (Schonherr) (Coleoptera). J Stored Prod Res 55:68–72

    Article  Google Scholar 

  • Jagadeesan R, Collins PJ, Nayak MK, Schlipalius DI, Ebert PR (2016) Genetic characterization of field-evolved resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Laemophloeidae: Coleoptera). Pest Biochem Physiol 127:67–75

    Article  CAS  Google Scholar 

  • Jagadeesan R, Schlipalius DI, Singarayan VT, Nath NS, Nayak MK, Ebert PR (2020) Unique genetic variants in dihydrolipoamide dehydrogenase (dld) gene confer strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens). Pestic Biochem Physiol 104717

  • Kaur R, Nayak MK (2015) Developing effective fumigation protocols to manage strongly phosphine-resistant Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Pest Manag Sci 71:1297–1302

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Ebert PE, Walter HH, Swain AJ, Schlipalius DI (2013) Do phosphine resistance genes influence movement and dispersal under starvation? J Econ Entomol 100:2259–2266

    Article  Google Scholar 

  • Kaur R, Subbarayalu M, Jagadeesan R, Daglish GJ, Nayak MK et al (2015) Phosphine resistance in India is characterised by a dihydrolipamide dehydrogenase variant that is otherwise unobserved in eukaryotes. Heredity 115:188–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koçak E, Schlipalius D, Kaur R, Tuck A, Ebert P et al (2015) Determining phosphine resistance in rust red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera : Tenebrionidae) populations from Turkey. Türk Entomol Derg 39:129–136

    Article  Google Scholar 

  • Konemann CE, Hubhachen Z, Opit GP, Gautam SG, Bajracharya NS (2017) Phosphine resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) collected from grain storage facilities in Oklahoma. USA J Econ Entomol 110:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Li ZM, Liu SS, Liu YQ, Ye GY (2007) Temperature-related fitness costs of resistance to spinosad in the diamondback moth, Plutella xylostella (Lepidoptera: Plutelidae). Bull Entomol Res 97:627–635

    Article  CAS  PubMed  Google Scholar 

  • Lorini I, Collins PJ, Daglish GJ, Nayak MK, Pavic H (2007) Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pest Manag Sci 63:358–364

    Article  CAS  PubMed  Google Scholar 

  • Malekpour R, Rafter MA, Daglish GJ, Walter GH (2018) The movement abilities and resource location behaviour of Tribolium castaneum: phosphine resistance and its genetic influences. J Pest Sci 91:739–749

    Article  Google Scholar 

  • McKenzie JA (1996) Ecological and evolutionary aspects of insecticide resistance. R.G Landes Company, Austin

    Google Scholar 

  • McKenzie JA, Whitten MJ, Adena MA (1982) The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49:1–9

    Article  Google Scholar 

  • Montero-Pau J, Gomez A (2008) Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnol Oceanogr Methods 6:218–222

    Article  CAS  Google Scholar 

  • Nayak MK, Holloway JC, Emery RN, Pavic H, Bartlet J, Collins PJ (2013) Strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae): its characterisation, a rapid assay for diagnosis and its distribution in Australia. Pest Manag Sci 69:48–53

    Article  CAS  PubMed  Google Scholar 

  • Nayak MK, Falk MG, Emery RN, Collins PJ, Holloway JC (2017) An analysis of trends, frequencies and factors influencing the development of resistance to phosphine in the red flour beetle Tribolium castaneum (Herbst) in Australia. J Stored Prod Res 72:35–48

    Article  Google Scholar 

  • Nayak MK, Daglish GJ, Phillips TW, Ebert PR (2020) Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Ann Rev Entomol 65:333–350

    Article  CAS  Google Scholar 

  • Nguyen T, Collins PJ, DuongTM SD, Ebert PR (2016) Genetic conservation of phosphine resistance in the rice weevil, Sitophilus oryzae (L). J Hered 107:228–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira EE, Guedes RNC, Totola MR, De Marco P (2007) Competition between insecticide-susceptible and–resistant populations of the maize weevil, Sitophilus zeamais. Chemosphere 69:17–24

    Article  CAS  PubMed  Google Scholar 

  • Pimentel MAG, D’A Faroni LR, Totola MR, Guedes RNC, (2007) Phosphine resistance, respiration rate and fitness consequences in stored-product insects. Pest Manag Sci 63:876–881

    Article  CAS  PubMed  Google Scholar 

  • Raymond B, Sayyed AH, Wright DJ (2005) Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis. Proc R Soc B 272:1519–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond B, Wright DJ, Bonsall MB (2011) Effects of host plant and genetic background on the fitness costs of resistance to Bacillus thuringiensis. Heredity 106:281–288

    Article  CAS  PubMed  Google Scholar 

  • Rilett RO (1949) The biology of Laemophloeus ferrugineus (Steph.). Can J Res 27:112–148

    Article  CAS  PubMed  Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Sakka MK, Romano D, Stefanini C, Canale A, Benelli G, Athanassiou C (2020) Mobility parameters of Tribolium castaneum and Rhyzopertha dominica populations with different susceptibility to phosphine. J Stored Prod Res 87:101593

    Article  Google Scholar 

  • Schlipalius DI, Cheng Q, Reilly PE, Collins PJ, Ebert PR (2002) Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics 161:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlipalius DI, Chen W, Collins PJ, Nguyen T, Reilly PEB, Ebert PR (2008) Gene interactions constrain the course of evolution of phosphine resistance in the lesser grain borer, Rhyzopertha dominica. Heredity 100:506–516

    Article  CAS  PubMed  Google Scholar 

  • Schlipalius DI, Valmas N, Tuck AG, Jagadeesan R, Ma L, Kaur R, Goldinger A, Anderson C, Kuang J, Zuryn S et al (2012) A core metabolic enzyme mediates resistance to phosphine gas. Science 338:807–810

    Article  CAS  PubMed  Google Scholar 

  • Schlipalius DI, Tuck A, Jagadeesan R, Nguyen T, Kaur R, Subramanian S et al (2018) Variant linkage analysis using de Novo transcriptome sequencing identifies a conserved phosphine resistance gene in insects. Genetics 209:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AX, Bacigalupe LD, Luna-Rudloff M, Figueroa C (2012) Insecticide resistance mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera: Aphididae) II: Costs and benefits. PLoS ONE 7(6):e36810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa AH, Faroni LR, Pimentel MAG, Guedes RNC (2009) Developmental and population growth rates of phosphine-resistant and -susceptible populations of stored-product insect pests. J Stored Prod Res 45:241–246

    Article  CAS  Google Scholar 

  • Tabashnik BE (1989) Managing resistance with multiple pesticide tactics: theory, evidence and recommendations. J Econ Entomol 82:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • White NDG, Bell RJ (1990) Relative fitness of a malathion resistant strain of Cryptolestes ferrugineus (Coleoptera: Cucujidae) when development and oviposition occur in malathion-treated and untreated wheat kernels. J Stored Prod Res 26:23–37

    Article  CAS  Google Scholar 

  • White NDG, Collin DJ, Kawamoto H, Sinha RN (1995) Population growth of Cryptolestes ferrugineus and C. pusillus (Coleoptera: Cucujidae) alone, or in competition in stored wheat or maize at different temperatures. Bull Entomol Res 85:425–429

    Article  Google Scholar 

  • Zhu X, Yang Y, Wu Q, Wang S, Xie W, Guo Z, Kang S, Xia J, Zhang Y (2016) Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 72:289–297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

With regard to the development of the introgressed resistant strain, the authors gratefully acknowledge the support of plant biosecurity cooperative research centre (Project PBCRC3039), established and supported under the Australian Government’s Cooperative Research Centres program (http://www.crcplantbiosecurity.com.au). With regard to the investigation of potential fitness costs, the authors gratefully acknowledge the support of the Australian Government’s Australia-India strategic research fund (AISRF 48516), Department of Industry and Science (DIS), Canberra. The authors would also like to acknowledge Kerri Chandra for assisting with statistical analysis, David Schlipalius for designing primers for molecular screening and Lui Lawrence Rangger for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgine T. Singarayan.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable as it involves no human research participants.

Consent for publication

Not applicable as it involves no human research participants.

Additional information

Communicated by Emmanouil Roditakis .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singarayan, V.T., Jagadeesan, R., Nayak, M.K. et al. Gene introgression in assessing fitness costs associated with phosphine resistance in the rusty grain beetle. J Pest Sci 94, 1415–1426 (2021). https://doi.org/10.1007/s10340-020-01315-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01315-6

Keywords

Navigation