Skip to main content

Advertisement

Log in

Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent years, metal oxides have been studied as an encapsulating matrix nevertheless, few studies the effect that can exist between different precursors to form this type of nanomaterials; In this paper, we compare its ability as a mangiferin (MG) nanoencapsulated. Phytochemical that has been studied for its generous biological properties like anti-inflammatory, antiproliferative, and others; the nanoparticles (NP’s) be synthesized with zinc nitrate and zinc acetate. The results showed modifications in the morphology of the ZnO associated with the precursor but, there is no significant difference between any treatment that is associated with antitopoisomerase activity however, ZnOA-MG is statistically the best treatment by reducing in greater proportion the production of COX-II prostaglandins (97.38 ± 7.09%) with a significant difference (p < 0.05) compared toCOX-I (68.02 ± 2.14%) but, it is not considered a selective treatment moreover ZnOA-MG proved to be the least hepatotoxic (IC50, 140.19 ± 13.10 µg/mL) while ZnON is the most cytotoxic for HEP-G2 and BEAS-2B (IC50, 51.27 ± 4.72 and 26.91 ± 3.21 µg/mL). All treatments change the morphology of erythrocytes to low concentrations (25 µg/mL). Therefore the MG load benefits the biological impact of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q. Yuan, S. Hein, and R. D. K. Misra (2010). Acta Biomater. 6, (7), 2732–2739.

    Article  CAS  PubMed  Google Scholar 

  2. J. Wright and N. Sommerdijk Sol-Gel Materials Chemistry and Applications (Gordon & Breach Science, London, 2010).

    Google Scholar 

  3. G. Rodríguez-Gattorno, P. Santiago-Jacinto, L. Rendon-Vázquez, J. Németh, I. Dékány, and D. Díaz (2003). J. Phys. Chem. B 107, (46), 12597–12604.

    Article  Google Scholar 

  4. Y. S. Fu, et al. (2007). J. Am. Chem. Soc. 129, (51), 16029–16033.

    Article  CAS  PubMed  Google Scholar 

  5. Z. R. Khan, M. S. Khan, M. Zulfequar, and M. Shahid Khan (2011). Mater. Sci. Appl. 2, (5), 340–345.

    CAS  Google Scholar 

  6. C. B. Ong, L. Y. Ng, and A. W. Mohammad (2018). Renew. Sustain. Energy Rev. 81, (1), 536–551.

    Article  CAS  Google Scholar 

  7. M. F. Khan, et al. (2016). Sci. Rep. 6, (March), 1–12.

    CAS  Google Scholar 

  8. A. Sirelkhatim, et al. (2015). Nano-Micro Lett. 7, (3), 219–242.

    Article  CAS  Google Scholar 

  9. A. C. Anselmo and S. Mitragotri (2016). Bioeng. Transl. Med. 1, (1), 10–29.

    Article  PubMed  PubMed Central  Google Scholar 

  10. F. H. Chalé, D. B. Ancona, and M. R. S. Campos (2014). Nutr. Hospital. 29, (1), 10–20.

    Google Scholar 

  11. N. Saha and S. D. Gupta (2016). J. Clust. Sci. 27, (4), 1419–1437.

    Article  CAS  Google Scholar 

  12. J. M. Carbonell-Capella, M. Buniowska, F. J. Barba, M. J. Esteve, and A. Frígola (2014). Comprehens. Rev. Food Sci. Food Saf. 13, (2), 155–171.

    Article  CAS  Google Scholar 

  13. A. Vyas, K. Syeda, A. Ahmad, S. Padhye, and F. H. Sarkar (2012). Mini-Rev. Med. Chem. 12, (5), 412–425.

    Article  CAS  PubMed  Google Scholar 

  14. A. J. Núñez Sellés, et al. (2002). J. Agric. Food Chem. 50, (4), 762–766.

    Article  PubMed  Google Scholar 

  15. H. Liu, et al. (2011). J. Pharm. Biomed. Anal. 55, (5), 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  16. F. Gold-Smith, A. Fernandez, and K. Bishop (2016). Nutrients 8, (7), 16–20.

    Article  Google Scholar 

  17. P. Uikey and K. Vishwakarma (2016). Int. J. Emerging Technol. Comput. Sci. Electron. (IJETCSE) 21, (2), 976–1353.

    Google Scholar 

  18. A. Khansari, M. Enhessari, and M. Salavati-Niasari (2013). J. Clust. Sci. 24, (1), 289–297.

    Article  CAS  Google Scholar 

  19. R. Kumar, A. Umar, G. Kumar, and H. S. Nalwa (2017). Ceram. Int. 43, (5), 3940–3961.

    Article  CAS  Google Scholar 

  20. J. Nitiss and J. C. Wang (1988). Proc. Nat. Acad. Sci. 85, (20), 7501–7505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. L. Nitiss and K. C. Nitiss (2003). DNA Topoisome. Protoc. 95, (1), 315–328.

    Google Scholar 

  22. N. Chatterjee, et al. (2014). J. Toxicol. Environ. Health Part A 77, (11), 1399–1408.

    Article  CAS  Google Scholar 

  23. N. Chatterjee, J. S. Yang, K. Park, S. M. Oh, J. Park, and J. Choi (2015). Environ. Health Toxicol. 30, e2015007.

    Article  PubMed  PubMed Central  Google Scholar 

  24. A. Pérez-Larios, R. Lopez, A. Hernández-Gordillo, F. Tzompantzi, R. Gómez, and L. M. Torres-Guerra (2012). Fuel 100, 139–143.

    Article  Google Scholar 

  25. K. Hatanaka, et al. (1999). Life Sci. 65, (13), 161–166.

    Article  Google Scholar 

  26. Y. Harada, et al. (1996). Prostaglandins 51, (1), 19–33.

    Article  CAS  PubMed  Google Scholar 

  27. F. F. Razura-Carmona, et al. (2019). Cancers 11, (1965), 1–17.

    Google Scholar 

  28. M. B. Hansen, S. E. Nielsen, and K. Berg (1989). J. Immunol. Methods 119, (2), 203–210.

    Article  CAS  PubMed  Google Scholar 

  29. J. Javidi, A. Haeri, F. H. Shirazi, F. Kobarfard, and S. Dadashzadeh (2017). J. Clust. Sci. 28, (1), 165–178.

    Article  CAS  Google Scholar 

  30. Z. Yufei, G. Zhiyou, G. Xiaoqi, C. Dongxing, D. Yunxiao, and Z. Hongtao (2010). J. Semicond. 31, (8), 1–6.

    Article  Google Scholar 

  31. S. H. Jung, et al. (2008). Cryst Growth Design 8, (1), 265–269.

    Article  CAS  Google Scholar 

  32. Y. R. Corrales-Ureña, et al. (2017). Perspect. Invest. 7, (1), 8–16.

    Google Scholar 

  33. S. Rajeshkumar, S. V. Kumar, A. Ramaiah, H. Agarwal, T. Lakshmi, and S. M. Roopan (2018). Enzyme Microb. Technol 117, 91–95.

    Article  CAS  PubMed  Google Scholar 

  34. M. Pudukudy and Z. Yaakob (2015). J. Clust. Sci. 26, (4), 1187–1201.

    Article  CAS  Google Scholar 

  35. A. Pona, A. Cline, S. S. Kolli, S. L. Taylor, and S. R. Feldman (2019). Dermatol. Therapy 32, (2), 1–21.

    Article  Google Scholar 

  36. Y. Zu, et al. (2011). Int. J. Mol. Sci. 12, (7), 4237–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Sheng, Z. Miao, and W. Zhang (2016). Stud. Nat. Product. Chem. 47, (2), 1–28.

    CAS  Google Scholar 

  38. A. M. Youssef, A. M. El-Nahrawy, and A. B. Abou-Hammad (2017). Int. J. Biol. Macromol. 97, 561–567.

    Article  CAS  PubMed  Google Scholar 

  39. A. Nejabatdoust, A. Salehzadeh, H. Zamani, and Z. Moradi-Shoeili (2019). J. Clust. Sci. 30, (2), 329–336.

    Article  CAS  Google Scholar 

  40. Y. Gao, et al. (2019). J. Clust. Sci. 30, (4), 937–946.

    Article  CAS  Google Scholar 

  41. M. G. Moro, et al. (2019). Braz. Dental J. 30, (2), 133–138.

    Article  Google Scholar 

  42. T. SivaKumar, A. ShobhaRani, K. Sujatha, B. Purushotham, and P. Neeraja (2017). Asian J. Pharm. Clin. Res. 10, (1), 313–316.

    Google Scholar 

  43. M. Sumalatha, et al. (2015). Nat Product Commun. 10, (10), 1703–1704.

    Google Scholar 

  44. Y. Zhou, et al. (2017). Nanomaterials 7, (4), 1–15.

    Article  Google Scholar 

  45. U. Kadiyala, E. S. Turali-Emre, J. H. Bahng, N. A. Kotov, and J. ScottVanepps (2018). Nanoscale 10, (10), 4927–4939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Sivaraj, P. K. S. M. Rahman, P. Rajiv, S. Narendhran, and R. Venckatesh (2014). Spectrochim. Acta-Part A 129, 255–258.

    Article  CAS  Google Scholar 

  47. B. C. Heng, X. Zhao, S. Xiong, K. W. Ng, F. Y. Boey, and J. S. Loo (2010). Food Chem. Toxicol. 48, (6), 1762–1766.

    Article  CAS  PubMed  Google Scholar 

  48. L. Künzi, et al. (2015). Sci. Rep. 5, 1–10.

    Article  Google Scholar 

  49. L. H. Zhao, R. Zhang, J. Zhang, and S. Q. Sun (2012). CrystEngComm 14, (3), 945–950.

    Article  CAS  Google Scholar 

  50. J. P. Singhal and A. R. Ray (2002). Biomaterials 23, (4), 1139–1145.

    Article  CAS  PubMed  Google Scholar 

  51. J. Gay, L. Garçon, and P. Coppo (2016). EMC-Tratado de Medicina 20, (4), 1–7.

    Article  Google Scholar 

  52. M. Rajapriya, et al. (2019). J. Clust. Sci. 6, 791–801.

    Google Scholar 

Download references

Acknowledgements

The FFR-C student thanks the National Council of Science and Technology of Mexico (CONACYT) for the grant number 787023 awarded for the development of postgraduate studies

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alberto Sánchez-Burgos.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razura-Carmona, F.F., Herrera-Martínez, M., Sáyago-Ayerdi, S.G. et al. Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B. J Clust Sci 33, 163–171 (2022). https://doi.org/10.1007/s10876-020-01957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01957-7

Keywords

Navigation