Skip to main content
Log in

Verifiable Quantum Key Exchange with Authentication

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Key exchange is an important primitive protocol to establish and agree a shared session key between two legitimate users over a public channel. In this paper, we first review the parity properties of the characteristics of Bell states via entanglement swapping to form several interesting equations. Then we give a definition of verifiable quantum key exchange with authentication (VQKEA) and present a novel VQKEA protocol based on the parity properties of Bell states via entanglement swapping. Compared with most existing quantum key exchange protocols, our proposed protocol can meet more secure requirements, e.g., authentication, verifiability, fairness and forward secrecy. In addition, it is feasible to implement our proposed protocol with the present quantum processing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on the Foundations of Computer Science, pp. 124–134, IEEE, New York (1994)

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Proc. 28th Annual ACM Symposium on Theory of Computing, pp. 212–219, ACM, Philadelphia (1996)

  3. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proc. IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179, IEEE, Bangalore (1984)

  4. Ekert, A.K.: Quantum Crypto Graphy bases on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–664 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H.: Quantum cryptography using any two non-orthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  7. Lo, H.K., Curty, M., Qi, B.: Measurement device independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  8. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature. 557, 400–403 (2018)

    Article  ADS  Google Scholar 

  9. Stinson, D.R.: Universal hashing and authentication codes. CRYPTO ‘91: Proceedings of the 11th Annual International Cryptology Conference on Advances in Cryptologypp. 74–85, Springer, Heidelberg (1992)

  10. Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of Quantum Messages. In: Chazelle B. (eds.) The 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS’02), pp. 449–458, IEEE, Vancouver (2002)

  11. Nagy, N., Akl, S.G.: Authenticated quantum key distribution without classical communication. Parallel Process. Lett. 17(03), 323–335 (2007)

    Article  MathSciNet  Google Scholar 

  12. Rass, S., König, S., Schauer, S.: BB84 quantum key distribution with intrinsic authentication. In: Privman, V. and Ovchinnikov, V. (eds.) ICQNM 2015, The Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies, pp. 41–44, ThinkMind, Wilmington (2015)

  13. Assis, F.M., Stojanovic, A., Mateus, P., Omar, Y.: Improving classical authentication over a Quantum Channel. Entropy. 14(12), 2531–2549 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. Mosca, M., Stebila, D., Ustaoğlu, B.: Quantum key distribution in the classical authenticated key exchange framework. Proceedings of international workshop on post-quantum cryptography. Lect. Notes Comput. Sci. 7932, 136–154 (2013)

    Article  Google Scholar 

  15. Kiktenko, E.O., Malyshev, A.O., Gavreev, M.A: Lightweight authentication for quantum key distribution. http://arxiv.org/pdf/1903.10237.pdf (2020) Accessed 23 September 2020

  16. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  ADS  Google Scholar 

  17. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. He, Y.F., Ma, W.P.: Two quantum key agreement protocols immune to collective noise. Int. J. Theor. Phys. 56(1), 328–338 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–2174 (2017)

    Article  MathSciNet  Google Scholar 

  22. Yang, Y.G., Gao, S., Li, D., et al.: Two-party quantum key agreement over a collective noisy channel. Quantum Inf. Process. 18(3), 74 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, Y.G., Li, B.R., Li, D., et al.: New quantum key agreement protocols based on Bell states. Quantum Inf. Process. 18(10), 322 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yan, L., Zhang, S., Chang, Y., Sheng, Z., Sun, Y.: Semi-quantum key agreement and private comparison protocols using bell states. Int. J. Theor. Phys. 58(11), 3852–3862 (2019)

    Article  MathSciNet  Google Scholar 

  25. Shi, R.H.: Useful equations about bell states and their applications to quantum secret sharing. IEEE Commun. Lett. 24(2), 386–390 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.61772001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Rh., Liu, B. & Zhang, M. Verifiable Quantum Key Exchange with Authentication. Int J Theor Phys 60, 227–242 (2021). https://doi.org/10.1007/s10773-020-04681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04681-0

Keywords

Navigation