Skip to main content
Log in

Failure Analysis of Ductile Iron Crankshaft in Four-Cylinder Diesel Engine

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Spheroidal graphite cast iron is widely used in automobile crankshafts due to features such as high strength, high toughness, good machinability, low cost, and ductility. The purpose of this paper is first to analyze the fatigue failure in fractured truck crankshafts between 400,000 and 1,350,000 km and then to predict the stress field under the influence of the mechanical loads caused by gas combustion. Several experimental studies including chemical composition, material strength, hardness, and microstructure are performed to evaluate the failure analysis. A nonlinear three-dimensional stress analysis model by the elastic–plastic finite element method is used to estimate the crankshaft stress field under cyclic bending combined with steady torsion. Failure analysis showed that the fracture surface consisted of three zones: fatigue crack initiation, fatigue crack propagation, and static fracture; therefore, the failure is in fatigue. Also, the microstructure results showed that the crankshaft nodularity is about 70%, which crankshaft structures are usually acceptable greater than 80% of nodularity. Besides, hardness gradient showed that the crankshaft crankpin had no hardened surface layer. Finally, numerical stress analysis indicated that the highest stress is in the crankpin–web fillet zone that it is in good agreement with those obtained in the experimental field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. J. Laine, J. Vaara, K. Jalava, K. Soivio, J. Orkas, T. Frondelius, The mechanical properties of ductile iron at intermediate temperatures: the effect of silicon content and pearlite fraction. Int. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00473-8

    Article  Google Scholar 

  2. S. Biswas, C. Monroe, T. Prucha, Use of published experimental results to validate approaches to gray and ductile iron mechanical properties prediction. Inter. Metalcast. 11(4), 656–674 (2017). https://doi.org/10.1007/s40962-016-0126-3

    Article  Google Scholar 

  3. M. Benedetti, V. Fontanari, D. Lusuardi, Effect of graphite morphology on the fatigue and fracture resistance of ferritic ductile cast iron. Eng. Fract. Mech. 206, 427–441 (2019)

    Article  Google Scholar 

  4. O. Asi, Failure analysis of a crankshaft made from ductile cast iron. Eng. Fail. Anal. 13, 1260–1267 (2006)

    Article  CAS  Google Scholar 

  5. Y. Tominaga, J. Kim, Y. Pyun, R. Kayumov, J. Kim, J. Woo, A study on the restoration method of friction, wear and fatigue performance of remanufactured crankshaft. J. Mech. Sci. Technol. 27(10), 3047–3051 (2013)

    Article  Google Scholar 

  6. M. Fonte, V. Anes, P. Duarte, L. Reis, M. Freitas, Crankshaft failure analysis of a boxer diesel motor. Eng. Fail. Anal. 56, 09–115 (2015)

    Google Scholar 

  7. X.L. Xu, Z.W. Yu, Failure analysis of a truck diesel engine crankshaft. Eng. Fail. Anal. 92, 84–94 (2018)

    Article  Google Scholar 

  8. V. Infante, J.M. Silva, M.A.R. Silvestre, R. Baptista, Failure of a crankshaft of an aeroengine: a contribution for an accident investigation. Eng. Fail. Anal. 35, 286–293 (2013)

    Article  Google Scholar 

  9. L. Witek, M. Sikora, F. Stachowicz, T. Trzepiecinski, Stress and failure analysis of the crankshaft of diesel engine. Eng. Fail. Anal. 82, 703–712 (2017)

    Article  Google Scholar 

  10. C.F. Taylor, The Internal-Combustion Engine in Theory and Practice: Volume 2: Combustion, Fuels, Materials, Design (MIT Press, Cambridge, 1985)

    Book  Google Scholar 

  11. ASTM E415-17, Standard Test Method for Analysis of Carbon and Low-Alloy Steel by Spark Atomic Emission Spectrometry (ASTM International, Philadelphia, 2017)

    Google Scholar 

  12. ASTM E1086-14, Standard Test Method for Analysis of Austenitic Stainless Steel by Spark Atomic Emission Spectrometry (ASTM International, Philadelphia, 2014)

    Google Scholar 

  13. ASTM E8, E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, Philadelphia, 2016)

    Google Scholar 

  14. K. Aliakbari, K.H. Farhangdoost, Plastic deformation influence on material properties of autofrettaged tubes used in diesel engines injection system. J. Press. Vessel Technol. 136, 0414021–0414026 (2014)

    Article  CAS  Google Scholar 

  15. K. Aliakbari, K.H. Farhangdoost, The investigation of modelling material behavior in autofrettaged tubes made from aluminium alloys. IJE 27, 803–810 (2014)

    Google Scholar 

  16. ASTM E384-17, Standard Test Method for Knoop and Vickers Hardness of Materials (ASTM International, Philadelphia, 2017)

    Google Scholar 

  17. American Society for Metals, ASM Specialty Handbook, Cast Irons (American Society for Metals, Metals Park, 1996)

    Google Scholar 

  18. H.F. López, E. Fras, M.M.G. Cisneros, H.M. Mancha, Influence of microstructural factors and composition on the bending fatigue strength of ductile cast iron for crankshafts. Cast Metals 2(4), 192–196 (1989)

    Article  Google Scholar 

  19. L. Sǐdanin, S. Milićev, N. Matović, Fatigue failure of ductile iron crankshafts. Cast Metals 4(1), 50–54 (1991)

    Article  Google Scholar 

  20. L. Collini, G. Nicoletto, R. Konečná, Microstructure and mechanical properties of pearlitic gray cast iron. Mater. Sci. Eng. A 488(1), 529–539 (2008)

    Article  CAS  Google Scholar 

  21. K.F. Nilsson, V. Vokál, Analysis of ductile cast iron tensile tests to relate ductility variation to casting defects and material microstructure. Mater. Sci. Eng. A 502(1–2), 54–63 (2009)

    Article  CAS  Google Scholar 

  22. DIN EN 1563, Spheroidal graphite cast irons (German National Standard, Berlin, 2012)

    Google Scholar 

  23. W. Li, Q. Yan, J. Xue, Analysis of a crankshaft fatigue failure. Eng. Fail. Anal. 55, 139–147 (2015)

    Article  CAS  Google Scholar 

  24. A. Vazdirvanidis, G. Pantazopoulos, A. Louvaris, Failure analysis of a hardened and tempered structural steel (42CrMo4) bar for automotive applications. Eng. Fail. Anal. 16, 1033–1038 (2009)

    Article  CAS  Google Scholar 

  25. H. Bayrakceken, Failure analysis of an automobile differential pinion shaft. Eng. Fail. Anal. 13, 1422–1428 (2006)

    Article  Google Scholar 

  26. M.R. Torshizian, M. Ghonchegi, K. Aliakbari, Failure analysis of ductile iron differential housing spline in 4WD passenger car. Inter Metalcast (2020). https://doi.org/10.1007/s40962-020-00487-2

    Article  Google Scholar 

  27. T. Sjögren, F. Wilberfors, M. Alander, Digital image correlation techniques for analyzing the deformation behavior of compacted graphite cast irons on a microstructural level. Appl. Mech. Mater. 70, 171–176 (2011)

    Article  Google Scholar 

  28. C. Guillemer-Neel, X. Feaugas, M. Clavel, Mechanical behavior and damage kinetics in nodular cast iron: Part I. Damage mechanisms. Metall. Mater. Trans. A 31, 3063–3074 (2000)

    Article  Google Scholar 

  29. M. Dong, C. Prioul, D. François, Damage effect on the fracture toughness of nodular cast iron: part I Damage characterization and plastic flow stress modeling. Metall. Mater. Trans. A 28, 2245–2254 (1997)

    Article  Google Scholar 

  30. B. Kareem, Mechanical failure analysis of automobile crankshafts under service reconditioned modelling approach. Eng. Fail. Anal. 80, 87–101 (2017)

    Article  Google Scholar 

  31. B. He, G. Zhou, S. Hou, L. Zeng, Virtual prototyping-based fatigue analysis and simulation of crankshaft. Int. J. Adv. Manuf. Technol. 88, 2631–2650 (2017)

    Article  Google Scholar 

  32. E. Köhler, E. Schopf, U. Mohr, Crankshaft assembly design, mechanics and loading, in Handbook of Diesel Engines, ed. by K. Mollenhauer, H. Tschöke (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-540-89083-6_8

    Chapter  Google Scholar 

  33. M. Fonte, P. Duarte, L. Reis, M. Freitas, V. Infante, Failure mode analysis of two crankshafts of a single cylinder diesel engine. Eng. Fail. Anal. 56, 185–193 (2015)

    Article  Google Scholar 

  34. H. Bayrakceken, I. Ucun, S. Tasgetiren, Fracture analysis of a camshaft made from nodular cast iron. Eng. Fail. Anal. 13(8), 1240–1245 (2006)

    Article  CAS  Google Scholar 

  35. A. Fatemi, J. Willimas, F. Montazersadgh, Fatigue performance evaluation of forged steel versus ductile cast iron crankshaft: a comparative study, University of Toledo Report (2007)

  36. W.D. Webster, R. Coell, D.A. Alfaro, Three-dimensional finite element analysis of a high speed diesel engine connecting rod. Society of Automotive Engineers, Warrendale, USA Technical Paper. 831322 (1983)

  37. G. Zhang, C. Wang, G. Pu, Fatigue life prediction of crankshaft repaired by twin arc spraying. J. Cent. South Univ. Technol. 12, 70–76 (2005)

    Article  CAS  Google Scholar 

  38. J.M. Tartaglia, R.B. Gundlach, G.M. Goodrich, Optimizing structure-property relationships in ductile iron. Inter. Metalcast. 8(4), 7–38 (2014). https://doi.org/10.1007/BF03355592

    Article  Google Scholar 

  39. W. Baer, Chunky graphite in ferritic spheroidal graphite cast iron: formation, prevention, characterization, impact on properties: an overview. Inter. Metalcast. 14, 454–488 (2020). https://doi.org/10.1007/s40962-019-00363-8

    Article  Google Scholar 

  40. R.A. Gonzaga, Influence of ferrite and pearlite content on mechanical properties of ductile cast irons. Mater. Sci. Eng. A 567, 1–8 (2013)

    Article  CAS  Google Scholar 

  41. P. Ferro, P. Lazzarin, F. Berto, Fatigue properties of ductile cast iron containing chunky graphite. Mater. Sci. Eng. A 554, 122–128 (2012)

    Article  CAS  Google Scholar 

  42. V.D. Cocco, F. Iacoviello, Ductile cast irons: microstructure influence on the damaging micro-mechanisms in overloaded fatigue cracks. Eng. Fail. Anal. 82, 340–349 (2017)

    Article  CAS  Google Scholar 

  43. F. Iacoviello, V.D. Cocco, Influence of the graphite elements morphology on the fatigue crack propagation mechanisms in a ferritic ductile cast iron. Eng. Fract. Mech. 167, 248–258 (2016)

    Article  Google Scholar 

  44. J. Tartaglia. Comparison of monotonic and cyclic properties of ductile irons in the AFS/DOE strain-life fatigue database for cast iron. Inter. Metalcast. 6, 7–22 (2012). https://doi.org/10.1007/BF03355524

  45. M. Jamalkhani Khameneh, M. Azadi, Evaluation of high-cycle bending fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron of crankshafts. Eng. Fail. Anal. 85, 189–200 (2018)

    Article  CAS  Google Scholar 

  46. R. Gundlach, M. Meyer, L. Winardi, Influence of Mn and S on the properties of cast iron part III testing and analysis. Inter. Metalcast. 9(2), 69–82 (2015). https://doi.org/10.1007/BF03355617

    Article  Google Scholar 

  47. C. Thomser, M. Bodenburg, J.C. Sturm, Optimized durability prediction of cast iron based on local microstructure. Inter. Metalcast. 11, 207–215 (2017). https://doi.org/10.1007/s40962-016-0091-x

    Article  Google Scholar 

  48. M. Cavallini, O. Di Bartolomeo, F. Iacoviello, Fatigue crack propagation damaging micro-mechanisms in ductile cast irons. Eng. Fract. Mech. 75, 694–704 (2008)

    Article  Google Scholar 

  49. E. Fras, H. Lopez, Etectic cells and nodule count-an index of molten iron quality. Inter. Metalcast. 10, 35–61 (2010). https://doi.org/10.1007/BF03355497

    Article  Google Scholar 

  50. I. Svensson, T. Sjögren, On modeling and simulation of mechanical properties of cast irons with different morphologies of graphite. Inter. Metalcast. 3, 67–77 (2009). https://doi.org/10.1007/BF03355460

    Article  CAS  Google Scholar 

  51. K. Aliakbari, Failure analysis of four-cylinder diesel engine crankshaft. J. Braz. Soc. Mech. Sci. Eng. 41(1), 30 (2019)

    Article  CAS  Google Scholar 

  52. K. Aliakbari, M. Imanparast, R. Masoudi-Nejad, Microstructure and fatigue fracture mechanism for a heavy-duty truck diesel engine crankshaft. Sci. Iran. B 26(6), 3313–3324 (2019)

    Google Scholar 

  53. K. Aliakbari, N. Safarzadeh, S.S. Mortazavi, Analysis of the crankshaft failure of wheel loader diesel engine. Int. J. Eng. 3, 473–479 (2018)

    Google Scholar 

  54. X.Q. Hou, Y. Li, T. Jiang, Fracture failure analysis of ductile cast iron crankshaft in a vehicle engine. J. Fail. Anal. Prev. 11, 10–16 (2011)

    Article  Google Scholar 

  55. V.C. Shahane, R.S. Pawar, Optimization of the crankshaft using finite element analysis approach. Automot. Engine Technol. 2(1–4), 1–23 (2017)

    Article  Google Scholar 

  56. D.S. MacKenzie, Failure analysis of a 1990 Mazda Miata crankshaft and timing pulley bolt. Fail. Anal. Prev. 11, 197–207 (2011)

    Article  Google Scholar 

  57. R.W. Hinton, Failure analyses of six cylinder aircraft engine crankshafts. J. Fail. Anal. Prev. 7, 407–413 (2007)

    Article  Google Scholar 

  58. M. Fonte, V. Infante, M. Freitas, L. Reisb, Failure mode analysis of two diesel engine crankshafts. Procedia Struct. Integr. 1, 313–318 (2016)

    Article  Google Scholar 

  59. M. Fonte, B. Li, L. Reis, M. Freitas, Crankshaft failure analysis of a motor vehicle. Eng. Fail. Anal. 35, 147–152 (2013)

    Article  Google Scholar 

  60. M.A. Alfares, A.H. Falah, A.H. Elkholy, Failure analysis of a vehicle engine crankshaft. J. Fail. Anal. Prev. 7, 12–17 (2007)

    Article  Google Scholar 

  61. F.S. Silva, Analysis of a vehicle crankshaft failure. Eng. Fail. Anal. 10, 605–616 (2003)

    Article  Google Scholar 

  62. J.A. Becerra, F.J. Jimenez, M. Torres, D.T. Sanchez, E. Carvajal, Failure analysis of reciprocating compressor crankshafts. Eng. Fail. Anal. 18, 735–746 (2011)

    Article  Google Scholar 

  63. R.K. Pandey, Failure of diesel-engine crankshafts. Eng. Fail. Anal. 10, 165–175 (2003)

    Article  CAS  Google Scholar 

  64. Z. Gao, H. Song, Y. Chen, J. Zhang, Z. Jiang, Fault feature and diagnostic method of bending micro- deformation of crankshaft of piston engine. Nondestruct. Test. Eval. (2019). https://doi.org/10.1080/10589759.2019.1668942

    Article  Google Scholar 

  65. J.E. Shigley, Mechanical Engineering Design, Matrix edn. (McGraw-Hill Book Co., New York, 1986)

    Google Scholar 

Download references

Acknowledgments

The author would like to appreciate sincere cooperation of Mr. M.R. Saberi (Manufacturing and production workshop, Faculty of Montazeri), Mr. M. Esfidani (Materials Mechanical Properties Lab, Ferdowsi University of Mashhad) and Mr. D. Khademi (Electron Microscopy Research Core, FUM Central Lab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Aliakbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Reviews on the Behavior of Cast Irons

According to the first group of literature reviews on the behavior of cast irons (Table 7).

Table 7 Backgrounds of Research

Appendix 2: Reviews on Failure Analysis

According to the second group of the literature reviewing the investigation of failure analysis (Table 8).

Table 8 Backgrounds of research

Appendix 3: Stress Analysis of the Crankshaft

Stress analysis literature include numerous studies devoted to reciprocating piston engine crankshafts.31,32,33,35,37,64 The force applied to the piston \( F_{\text{P}} \) is equal to the superimposition of the gas force \( F_{\text{G}} \) and oscillating inertial force \( F_{\text{os}} \) as follows (Figure 13).

Figure 13
figure 13

Forces acting in a reciprocating piston engine, offset piston pin.

$$ F_{\text{P}} = F_{\text{G}} + F_{\text{os}} $$
(Eqn 1)

The gas force \( F_{\text{G}} \) is obtained the product of the maximum combustion chamber pressure \( P_{\hbox{max} } \) and the area of the piston, and the inertial force \( F_{\text{os}} \) is obtained the oscillating mass \( m_{\text{os}} \) (piston mass and part of the connecting rod mass) and \( A_{\text{p}} \) the instantaneous acceleration of the piston \( a \).

$$ F_{\text{G}} = P_{\hbox{max} } A_{\text{p}} $$
(Eqn 2)
$$ F_{\text{os}} = m_{\text{os}} a $$
(Eqn 3)

The thrust in the connecting rod \( F_{\text{cr}} \) is obtained using dividing the force applied to the piston \( F_{\text{P}} \) and the inclination angle of the connecting rod with the line of stroke \( \theta \).

$$ F_{\text{cr}} = \frac{{F_{\text{P}} }}{\cos \theta } $$
(Eqn 4)

The tangential force applied \( F_{\text{t}} \) and subsequently the torsional torque applied to the crankshaft axis are obtained as follows:

$$ F_{\text{t}} = F_{\text{cr}} \sin \left( {\theta + \emptyset } \right) $$
(Eqn 5)
$$ T = F_{\text{t}} \times r $$
(Eqn 6)

The radial force \( F_{\text{rad}} \) acts on the crankpin radially and subsequently the bending moment applied to the crankshaft are obtained as follows:

$$ F_{\text{rad}} = F_{\text{cr}} { \cos }\left( {\theta + \emptyset } \right) $$
(Eqn 7)
$$ M = F_{\text{rad}} \times b $$
(Eqn 8)

where \( \lambda = l /r \) is the ratio of the length of the connecting rod to the crank radius, \( \emptyset = \sin^{ - 1} (\sin \theta /\lambda ) \) is the angle of rotation of the crankshaft and b is the distance between the crankpin bearing center to web center.

The maximum bending and shear stresses are taken into account by considering factors such as shock loads due to abrupt change in performance such as start-up or sudden braking, load dynamic factor of bending moment \( C_{\text{m}} \), load dynamic factor of torsion \( C_{\text{t}} \).65

$$ \sigma_{ \hbox{max} } = \frac{16}{{\pi d^{3} }}\left[ {C_{\text{m}} M + \sqrt {\left( {C_{\text{m}} M} \right)^{2} + \left( {C_{\text{t}} T} \right)^{2} } } \right] $$
(Eqn 9)
$$ \tau_{\hbox{max} } = \frac{16}{{\pi d^{3} }}\left[ {\sqrt {\left( {C_{\text{m}} M} \right)^{2} + \left( {C_{\text{t}} T} \right)^{2} } } \right] $$
(Eqn 10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliakbari, K. Failure Analysis of Ductile Iron Crankshaft in Four-Cylinder Diesel Engine. Inter Metalcast 15, 1223–1237 (2021). https://doi.org/10.1007/s40962-020-00550-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00550-y

Keywords

Navigation