Skip to main content

Advertisement

Log in

Contamination of Arsenic, Chromium and Fluoride in the Indian groundwater: a review, meta-analysis and cancer risk assessment

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

It is well known that the long-term intake of water contaminated with arsenic (As), chromium (Cr) and fluoride (F) can develop carcinogenic and non-carcinogenic health problems. This review study for the first time presents the comprehensive data analysis of the groundwater levels of As, Cr and F reported in different states of India. The experimental studies conducted in different regions of India were compiled for inclusive data analysis. This study emphasizes on the severe carcinogenic and non-carcinogenic impacts of these contaminants on the health of the natives. The studies published in peer reviewed journals indexed in Scopus, Science Citation Index and Web of Science have been compiled and represented systematically in order to make the interpretation more visible and clear to the scientific community. The levels of selected elements have been compared with the limits set by Bureau of Indian Standards and World Health Organization and further interpreted for the health hazards of the natives of that particular region. The highest concentration of As, Cr and F reported in India remained 1.36 mg/L (West Bengal), 33.80 mg/L (Uttar Pradesh) and 85 mg/L (Haryana), respectively. These values were 136, 676 and 57 times higher than the standard limits set for these elements (0.01 mg/L; 1.0 mg/L and 0.05 mg/L, respectively). The state-wise patterns of concentration levels have been shown in graphical forms. This review also highlights the regions severely affected due to As, Cr and F contamination and reveals the research gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adimalla N, Li P (2019) Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum Ecol Risk Assess Int J 25(1–2):81–103

    Article  CAS  Google Scholar 

  • Adimalla N, Li P, Qian H (2019) Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Hum Ecol Risk Assess Int J 25(5):1107–1124

    Article  CAS  Google Scholar 

  • Ahada CP, Suthar S (2017) Assessment of human health risk associated with high groundwater fluoride intake in southern districts of Punjab, India. Exposure Health 11(4):267–275

    Article  CAS  Google Scholar 

  • Alarcon-Herrera MT, Martin-Alarcon DA, Gutierrez M, Reynoso-Cuevas L, Martin-Dominguez A, Olmos-Marquez MA, Bundschuh J (2020) Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: geographical data visualization. Sci Total Environ 698:134–168

    Article  CAS  Google Scholar 

  • Ali S, Shekhar S, Bhattacharya P, Verma G, Chandrasekhar T, Chandrashekhar AK (2018) Elevated fluoride in groundwater of Siwani Block, Western Haryana, India: a potential concern for sustainable water supplies for drinking and irrigation. Groundwr Sustain Develop 7:410–420

    Article  Google Scholar 

  • Andreae MO (1979) Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element 1. Limnol Oceanograp 24(3):440–452

    Article  CAS  Google Scholar 

  • Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B et al (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. The Lancet 376(9737):252–258

    Article  CAS  Google Scholar 

  • Arif M, Hussain I, Hussain J, Sharma S, Kumar S (2012) Fluoride in the drinking water of Nagaur Tehsil of Nagaur district, Rajasthan, India. Bull Environ Contam Toxicol 88(6):870–875

    Article  CAS  Google Scholar 

  • Arora M, Kiran B, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111(4):811–815

    Article  CAS  Google Scholar 

  • Avtar R, Kumar P, Surjan A, Gupta LN, Roychowdhury K (2013) Geochemical processes regulating groundwater chemistry with special reference to nitrate and fluoride enrichment in Chhatarpur area, Madhya Pradesh, India. Environ Earth Sci 70(4):1699–1708

    Article  CAS  Google Scholar 

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Critical Rev Environ Sci Technol 36(6):433–487

    Article  CAS  Google Scholar 

  • Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35(13):2621–2626

    Article  CAS  Google Scholar 

  • Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ Monit Assess 173(1–4):643–652. https://doi.org/10.1007/s10661-010-1412-9

    Article  CAS  Google Scholar 

  • Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Total Environ 612:148–169

    Article  CAS  Google Scholar 

  • Bidhuri S, Khan MMA (2020) Assessment of ground water quality of central and southeast districts of NCT of Delhi. J Geol Soc India 95(1):95–103

    Article  Google Scholar 

  • BIS I (2012) 10500: 2012. Indian standard drinking water-specification (second revision). Bureau of Indian Standards, New Delhi

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  • Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environ Monit Assess 170(1–4):345–351

    Article  CAS  Google Scholar 

  • Chakraborti D, Singh EJ, Das B, Shah BA, Hossain MA, Nayak B, Singh NR (2008) Groundwater arsenic contamination in Manipur, one of the seven North-Eastern Hill states of India: a future danger. Environ Geol 56(2):381–390. https://doi.org/10.1007/s00254-007-1176-x

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Murrill M, Das R, Patil SG, Sarkar A, Das KK (2013) Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. J Hazard Mater 262:1048–1055

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Chatterjee A, Das D, Das B, Nayak B, Sengupta MK (2016) Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: magnitude, health, socio-economic effects and mitigation approaches. J Trace Elem Med Biol 38:33–45

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Chatterjee A, Das D, Nayak B, Sengupta MK (2017) Groundwater arsenic contamination and its health effects in India. Hydrogeol J 25(4):1165–1181

    Article  CAS  Google Scholar 

  • Chatterjee D, Adak S, Banerjee N, Bhattacharjee P, Bandyopadhyay AK, Giri AK (2018) Evaluatıon of health effects, genetıc damage and telomere length ın children exposed to arsenic in West Bengal, İndia. Mutation Res Genet Toxicol Environ Mutagen 836:82–88

    Article  CAS  Google Scholar 

  • Chintalapudi P, Pujari P, Khadse G, Sanam R, Labhasetwar P (2017) Groundwater quality assessment in emerging industrial cluster of alluvial aquifer near Jaipur, India. Environ Earth Sci 76(1):8

    Article  CAS  Google Scholar 

  • Christoforidou EP, Riza E, Kales SN, HadjistavrouK Stoltidi M, Kastania AN, Linos A (2013) Bladder cancer and arsenic through drinking water: a systematic review of epidemiologic evidence. J Environ Sci Health Part A 48(14):1764–1775

    Article  CAS  Google Scholar 

  • Cieslak-Golonka M (1996) Toxic and mutagenic effects of chromium (VI). A review. Polyhedron 15(21):3667–3689

    Article  CAS  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol Appl Pharmacol 188(1):1–5

    Article  CAS  Google Scholar 

  • Das A, Das SS, Chowdhury NR, Joardar M, Ghosh B, Roychowdhury T (2020) Quality and health risk evaluation for groundwater in Nadia district, West Bengal: an approach on its suitability for drinking and domestic purpose. Groundwater Sustain Develop 10:100351

    Article  Google Scholar 

  • Dev R, Bali M (2019) Evaluation of groundwater quality and its suitability for drinking and agricultural use in district Kangra of Himachal Pradesh, India. J Saudi Soc Agricu Sci 18(4):462–468

    Google Scholar 

  • Dey RK, Swain SK, Mishra S, Sharma P, Patnaik T, Singh VK et al (2012) Hydrogeochemical processes controlling the high fluoride concentration in groundwater: a case study at the Boden block area, Orissa, India. Environ Monit Assess 184(5):3279–3291

    Article  CAS  Google Scholar 

  • Dissanayake CB (1991) The fluoride problem in the ground water of Sri Lanka- environmental management and health. Int J Environ Stud 38(2–3):137–155

    Article  CAS  Google Scholar 

  • Dutta V, Fatima N, Kumar N (2019) Excessive fluoride in groundwater of Central Ganga Alluvial Plain: a case study of Fatehpur, North India. Int J Environ Sci Technol 16(12):7791–7798

    Article  CAS  Google Scholar 

  • Emenike CP, Tenebe IT, Jarvis P (2018) Fluoride contamination in groundwater sources in Southwestern Nigeria: assessment using multivariate statistical approach and human health risk. Ecotoxicol Environ Saf 156:391–402

    Article  CAS  Google Scholar 

  • Farzan SF, Karagas MR, Chen Y (2013) In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol 272(2):384–390

    Article  CAS  Google Scholar 

  • Francesconi KA, Kuehnelt D (2001) Arsenic compounds in the environment. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. CRC Press, Boca Raton, pp 71–114

    Google Scholar 

  • Francisca FM, Perez MEC (2009) Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. Environ Geochem Health 31(6):673

    Article  CAS  Google Scholar 

  • Frappart F (2013) Water and life. Nat Geosci 6:17. https://doi.org/10.1038/ngeo1672

    Article  CAS  Google Scholar 

  • Gaonkar SM, Karabasannavar SS, Patil VB, Kalashetty MB, Kalashetty BM (2019) Studies on Toxicity of Fluoride and Impact of Endemic Fluorosis from Groundwater Resources of Bagalkot District, Karnataka-Geospatial Information System Approach. J Geol Soc India 93(1):109–112

    Article  CAS  Google Scholar 

  • Garg VK, Suthar S, Singh S, Sheoran A, Jain S (2009) Drinking water quality in villages of southwestern Haryana, India: assessing human health risks associated with hydrochemistry. Environ Geol 58(6):1329–1340

    Article  CAS  Google Scholar 

  • WHO, Geneva (1996) https://www.who.int/water_sanitation_health/dwq/chemicals/chromium.pdf WHO,1996

  • Ghosh A, Mukherjee K, Ghosh SK, Saha B (2013) Sources and toxicity of fluoride in the environment. Res Chem Intermed 39(7):2881–2915

    Article  CAS  Google Scholar 

  • Gowd SS, Govil PK (2008) Distribution of heavy metals in surface water of Ranipet industrial area in Tamil Nadu, India. Environ Monit Assess 136(1–3):197–207

    CAS  Google Scholar 

  • CGWB Gujarat (2014) New Delhi, India. http://cgwb.gov.in/District_Profile/Gujarat/Junagadh.pdf

  • Halder D, Bhowmick S, Biswas A, Mandal U, Nriagu J et al (2012) Consumption of brown rice: a potential pathway for arsenic exposure in rural Bengal. Environ Sci Technol 46(7):4142–4148

    Article  CAS  Google Scholar 

  • Hanse A, Chabukdhara M, Baruah SG, Boruah H, Gupta SK (2019) Fluoride contamination in groundwater and associated health risks in Karbi Anglong District, Assam, Northeast India. Environ Monitand Assess 191(12):782

    Article  CAS  Google Scholar 

  • Hayes RB (1988) Review of occupational epidemiology of chromium chemicals and respiratory cancer. Sci Total Environ 71(3):331–339

    Article  CAS  Google Scholar 

  • Hedberg YS (2020) Chromium and leather: a review on the chemistry of relevance for allergic contact dermatitis to chromium. J Leather Sci Eng 2(1):1–15

    Article  Google Scholar 

  • Hossain S, Hosono T, Yang H, Shimada J (2016) Geochemical processes controlling fluoride enrichment in groundwater at the western part of Kumamoto area, Japan. Water Air Soil Pollut 227(10):385

    Article  CAS  Google Scholar 

  • Hussain I, Arif M, Hussain J (2012) Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India. Environ Monit Assess 184(8):5151–5158

    Article  CAS  Google Scholar 

  • Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S (2012) Fluoride in drinking water and defluoridation of water. Chem Rev 112(4):2454–2466

    Article  CAS  Google Scholar 

  • Jain CK, Bandyopadhyay A, Bhadra A (2010) Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environ Monit Assess 166(1–4):663–676

    Article  CAS  Google Scholar 

  • Karunanidhi D, Aravinthasamy P, Roy PD, Praveenkumar RM, Prasanth K, Selvapraveen S et al (2020) Evaluation of non-carcinogenic risks due to fluoride and nitrate contaminations in a groundwater of an urban part (Coimbatore region) of south India. Environ Monit Assess 192(2):102

    Article  CAS  Google Scholar 

  • Kaur G, Kumar R, Mittal S, Sahoo PK, Vaid U (2019) Ground/drinking water contaminants and cancer incidence: a case study of rural areas of South West Punjab, India. Hum Ecol Risk Assess Int J 1–22

  • Kaur L, Rishi MS, Siddiqui AU (2020) Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environ Pollut 259:113711

    Article  CAS  Google Scholar 

  • Kimambo V, Bhattacharya P, Mtalo F, Mtamba J, Ahmad A (2019) Fluoride occurrence in groundwater systems at global scale and status of defluoridation–state of the art. Groundwater Sustain Develop 9:100223

    Article  Google Scholar 

  • Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater 167(1–3):366–373

    Article  CAS  Google Scholar 

  • Kukillaya JP, Narayanan T (2014) Role of weathering of ferromagnesian minerals and surface water irrigation in evolving and modifying chemistry of groundwater in Palakkad district, Kerala, with special reference to its fluoride content. J Geol Soc India 84(5):579–589

    Article  CAS  Google Scholar 

  • Kumar A, Singh CK (2020) Arsenic enrichment in groundwater and associated health risk in Bari doab region of Indus basin, Punjab, India. Environ Pollut 256:113324

    Article  CAS  Google Scholar 

  • Kumar PS, Delson PD, Babu PT (2012) Appraisal of heavy metals in groundwater in Chennai city using a HPI model. Bull Environ Contam Toxicol 89(4):793–798

    Article  CAS  Google Scholar 

  • Kumar M, Rahman MM, Ramanathan AL, Naidu R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    Article  CAS  Google Scholar 

  • Kumar P, Singh CK, Saraswat C, Mishra B, Sharma T (2017) Evaluation of aqueous geochemistry of fluoride enriched groundwater: a case study of the Patan district, Gujarat, Western India. Water Sci 31(2):215–229

    Article  Google Scholar 

  • Kumar A, Sharma S, Mehra R, Kanwar P, Mishra R, Kaur I (2018) Assessment of radon concentration and heavy metal contamination in groundwater of Udhampur district, Jammu & Kashmir, India. Environ Geochem Health 40(2):815–831

    Article  CAS  Google Scholar 

  • Kumar S, Singh R, Venkatesh AS, Udayabhanu G, Sahoo PR (2019) Medical Geological assessment of fluoride contaminated groundwater in parts of Indo-Gangetic Alluvial plains. Sci Rep 9(1):1–16

    Article  Google Scholar 

  • Kumar R, Mittal S, Sahoo PK, Sahoo SK (2020) Source apportionment, chemometric pattern recognition and health risk assessment of groundwater from southwestern Punjab, India. Environ Geochem Health 1–23

  • Latha PS, Rao KN (2012) An integrated approach to assess the quality of groundwater in a coastal aquifer of Andhra Pradesh, India. Environ Earth Sci 66(8):2143–2169

    Article  CAS  Google Scholar 

  • Laxmankumar D, Satyanarayana E, Dhakate R, Saxena PR (2019) Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm mandal, RR district, Telangana state, India. Groundwater Sustain Develop 8:474–483

    Article  Google Scholar 

  • Malan A, Sharma HR (2018) Groundwater quality in open-defecation-free villages (NIRMAL grams) of Kurukshetra district, Haryana, India. Environ Monit Assess 190(8):472

    Article  CAS  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere-a review. Sci Total Environ 249(1–3):297–312

    Article  CAS  Google Scholar 

  • Mazumder DN, Ghosh A, Majumdar K, Ghosh N, Saha C, Mazumder RN (2010) Arsenic contamination of ground water and its health impact on population of district of Nadia, West Bengal, India. Indian J Commun Med 35(2):331. https://doi.org/10.4103/0970-0218.66897

    Article  Google Scholar 

  • Mazumder DNG, Deb D, Biswas A, Saha C, Nandy A, Ganguly B et al (2013) Evaluation of dietary arsenic exposure and its biomarkers: a case study of West Bengal, India. J Environ Sci Health Part A 48(8):896–904

    Article  CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C 34(1):1–32

    Article  CAS  Google Scholar 

  • Mukherjee I, Singh UK (2020) Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of east India. Microchem J 152:104304

    Article  CAS  Google Scholar 

  • Nadikatla SK, Mushini VS, Mudumba PSMK (2020) Water quality index method in assessing groundwater quality of Palakondamandal in Srikakulam district, Andhra Pradesh, India. Appl Water Sci 10(1):30

    Article  CAS  Google Scholar 

  • Narsimha A, Rajitha S (2018) Spatial distribution and seasonal variation in fluoride enrichment in groundwater and its associated human health risk assessment in Telangana State, South India. Hum Ecol Risk Assess Int J 24(8):2119–2132

    Article  CAS  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, GrazianoJH Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302. https://doi.org/10.1289/ehp.1205875

    Article  Google Scholar 

  • Naz A, Chowdhury A, Mishra BK, Gupta SK (2016) Metal pollution in water environment and the associated human health risk from drinking water: a case study of Sukinda chromite mine, India. Hum Ecol Risk Assess Int J 22(7):1433–1455

    Article  CAS  Google Scholar 

  • Oinam JD, Ramanathan AL, Linda A, Singh G (2011) A study of arsenic, iron and other dissolved ion variations in the groundwater of Bishnupur District, Manipur, India. Environ Earth Sci 62(6):1183–1195. https://doi.org/10.1007/s12665-010-0607-2

    Article  CAS  Google Scholar 

  • Olaka LA, Wilke FD, Olago DO, Odada EO, Mulch A, Musolff A (2016) Groundwater fluoride enrichment in an active rift setting: central Kenya Rift case study. Sci Total Environ 545:641–653

    Article  CAS  Google Scholar 

  • Pandith M, Malpe DB, Rao AD, Rao PN (2016) Aquifer wise seasonal variations and spatial distribution of major ions with focus on fluoride contamination-Pandharkawada block, Yavatmal district, Maharashtra, India. Environ Monit Assess 188(2):72

    Article  CAS  Google Scholar 

  • Patel KS, Sahu BL, Dahariya NS, Bhatia A, Patel RK, Matini L et al (2017) Groundwater arsenic and fluoride in Rajnandgaon District, Chhattisgarh, northeastern India. Appl Water Sci 7(4):1817–1826

    Article  CAS  Google Scholar 

  • Qasemi M, Afsharnia M, Zarei A, Farhang M, Allahdadi M (2019) Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: a case study. Hum Ecol Risk Assess Int J 25(5):1222–1233

    Article  CAS  Google Scholar 

  • Rahman MM, Naidu R, Bhattacharya P (2009) Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 31(1):9–21

    Article  CAS  Google Scholar 

  • Rasheed H, Slack R, Kay P (2016) Human health risk assessment for arsenic: a critical review. Critical Rev Environ Sci Technol 46(19–20):1529–1583

    Article  CAS  Google Scholar 

  • Rashid A, Farooqi A, Gao X, Zahir S, Noor S, Khattak JA (2020) Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. Chemosphere 243:125409

    Article  CAS  Google Scholar 

  • Ravish S, Setia B, Deswal S (2019) Hydro-chemical analysis of pre-monsoon groundwater of north-eastern Haryana. Groundwater Sustain Develop 8:630–643

    Article  Google Scholar 

  • Romshoo SA, Dar RA, Murtaza KO, Rashid I, Dar FA (2017) Hydrochemical characterization and pollution assessment of groundwater in Jammu Siwaliks, India. Environ Monit Assess 189(3):122

    Article  CAS  Google Scholar 

  • Rowland HA, Omoregie EO, Millot R, Jimenez C, Mertens J, Baciu C et al (2011) Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl Geochem 26(1):1–17

    Article  CAS  Google Scholar 

  • Roy D, Mani V, Kaur H, Kewalramani N (2008) Status of arsenic and mercury in different sources of water in Haryana. Animal Nutrit Feed Technol 8(2):273–278

    CAS  Google Scholar 

  • Rukah YA, Alsokhny K (2004) Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan. Geochemistry 64(2):171–181

    Article  CAS  Google Scholar 

  • Saha D, Sahu S, Chandra PC (2011) Arsenic-safe alternate aquifers and their hydraulic characteristics in contaminated areas of Middle Ganga Plain, Eastern India. Environ Monit Assess 175(1–4):331–348

    Article  CAS  Google Scholar 

  • Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44

    Article  Google Scholar 

  • Samal AC, Bhattacharya P, Mallick A, Ali MM, Pyne J, Santra SC (2015) A study to investigate fluoride contamination and fluoride exposure dose assessment in lateritic zones of West Bengal, India. Environ Sci Pollut Res 22(8):6220–6229

    Article  CAS  Google Scholar 

  • Sedman RM, Beaumont JAY, McDonald TA, Reynolds S, Krowech G, Howd R (2006) Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water. J Environ Sci Health Part C 24(1):155–182

    Article  CAS  Google Scholar 

  • Selvam S, Venkatramanan S, Sivasubramanian P, Chung SY, Singaraja C (2017) Geochemical characteristics and evaluation of minor and trace elements pollution in groundwater of Tuticorin city, Tamil Nadu, India using geospatial techniques. J Geol Soc India 90(1):62–68

    Article  CAS  Google Scholar 

  • Sen R, Sarkar S (2019) Arsenic Contamination of Groundwater in West Bengal: A Report. Waste management and resource efficiency. Springer, Singapore, pp 249–259

    Chapter  Google Scholar 

  • Sharma C, Mahajan A, Garg UK (2013) Assessment of arsenic in drinking water samples in south-western districts of Punjab-India. Desalination Water Treatment 51(28–30):5701–5709

    Article  CAS  Google Scholar 

  • Sharma S, Nagpal AK, Kaur I (2019) Appraisal of heavy metal contents in groundwater and associated health hazards posed to human population of Ropar wetland, Punjab, India and its environs. Chemosphere 227:179–190

    Article  CAS  Google Scholar 

  • Shelnutt SR, Goad P, Belsito DV (2007) Dermatological toxicity of hexavalent chromium. Crit Rev Toxicol 37(5):375–387

    Article  CAS  Google Scholar 

  • Singh N, Sharma M (2020) Assessment of the Quality of Drinking Water Sources and Human Health in a Rural Area of Solan, North India. MAPAN 35(2):301–308. https://doi.org/10.1007/s12647-019-00354-4

    Article  Google Scholar 

  • Singh AL, Singh VK (2018) Assessment of groundwater quality of Ballia district, Uttar Pradesh, India, with reference to arsenic contamination using multivariate statistical analysis. Appl Water Sci 8(3):95

    Article  CAS  Google Scholar 

  • Singh R, Misra V, Singh RP (2012) Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles. Environ Monit Assess 184(6):3643–3651

    Article  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, HertzPicciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  CAS  Google Scholar 

  • Srikanth R, Gautam A, Jaiswal SC, Singh P (2013) Urinary fluoride as a monitoring tool for assessing successful intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India. Environ Monit Assess 185(3):2343–2350

    Article  CAS  Google Scholar 

  • Srivastava S, Sharma YK (2013) Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environ Monit Assess 185(6):4995–5002

    Article  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328(1–2):27–34

    Article  CAS  Google Scholar 

  • Sunitha V, Reddy YS (2019) Hydrogeochemical evaluation of groundwater in and around Lakkireddipalli and Ramapuram, YSR District, Andhra Pradesh, India. Hydro Res 2:85–96

    Google Scholar 

  • Takahashi Y, Minamikawa R, HattoriKH Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38(4):1038–1044

    Article  CAS  Google Scholar 

  • Thapa R, Gupta S, Kaur H, Baski R (2019) Assessment of groundwater quality scenario in respect of fluoride and nitrate contamination in and around Gharbar village, Jharkhand, India. Hydro Res 2:60–68

    Google Scholar 

  • The Indian Express (2013) Chandigarh edition. http://archive.indianexpress.com/news/punjab-in-grip-of-cancer-over-33000-died-in-last-five-years-minister/1066072/

  • The Times of India (2013) Chandigarh edition.https://timesofindia.indiatimes.com/city/chandigarh/Punjabs-cancer-cases-exceed-national-average/articleshow/18232958.cms

  • The Tribune (2015) https://www.tribuneindia.com/news/archive/nation/high-arsenic-levels-found-in-12-punjab-haryana-districts-59094

  • Tirkey P, Bhattacharya T, Chakraborty S, Baraik S (2017) Assessment of groundwater quality and associated health risks: a case study of Ranchi city, Jharkhand, India. Groundwater Sustain Develop 5:85–100

    Article  Google Scholar 

  • Tripathi SM, Chaurasia S (2020) Detection of Chromium in surface and groundwater and its bio-absorption using bio-wastes and vermiculite. Eng Sci Technol Int J 23(5):1153–1161

    Google Scholar 

  • Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S (2019) An assessment of arsenic hazard in groundwater-soil-rice system in two villages of Nadia district, West Bengal, India. Environ Geochem Health 41(6):2381–2395

    Article  CAS  Google Scholar 

  • Uppal JS, Zheng Q, Le XC (2019) Arsenic in drinking water-Recent examples and updates from Southeast Asia. Curr Opin Environ Sci Health 7:126–135

    Article  Google Scholar 

  • Wang ZY (2001) Arsenic compounds as anticancer agents. Cancer Chemother Pharmacol 48(1):S72–S76

    Article  CAS  Google Scholar 

  • WHO (2004) Fluoride in drinking water. Background document for development of WHO Guidelines for drinking-water quality

  • WHO G (2011) Guidelines for drinking-water quality. World Health Organization 216:303–304

  • WHO (2018). https://www.who.int/news-room/fact-sheets/detail/arsenic

  • Yadav KK, Kumar V, Gupta N, Kumar S, Rezania S, Singh N (2019a) Human health risk assessment: study of a population exposed to fluoride through groundwater of Agra city, India. Regul Toxicol Pharmacol 106:68–80

    Article  CAS  Google Scholar 

  • Yadav S, Bansal SK, Yadav S, Kumar S (2019b) Fluoride distribution in underground water of district Mahendergarh, Haryana, India. Appl Water Sci 9(3):62

    Article  CAS  Google Scholar 

  • Yadav A, Nanda A, Sahu YK, Sahu BL, Patel KS, Pervez S et al (2020) Groundwater hydrochemistry of Rajnandgaon district, Chhattisgarh, Central India. Groundwater Sustain Develop 11:100352

    Article  Google Scholar 

  • Yasmin S, Ranjan S, Hilaluddin D’Souza D (2013) Effect of excess fluoride ingestion on human thyroid function in Gaya region, Bihar, India. Toxicol Environ Chem 95(7):1235–1243

    Article  CAS  Google Scholar 

  • Yousefi M, Ghalehaskar S, Asghari FB, Ghaderpoury A, Dehghani MH, Ghaderpoori M, Mohammadi AA (2019) Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran. Regul Toxicol Pharmacol 107:104408

    Article  CAS  Google Scholar 

  • Zhang JD, Li XL (1987) Chromium pollution of soil and water in Jinzhou. Chin J Prevent Med 21(5):262

    CAS  Google Scholar 

  • Zhang M, Wang A, He W, He P, Xu B, Xia T, Chen X, Yang K (2007) Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicology 236(3):208–216

    Article  CAS  Google Scholar 

  • Zhang L, Zhao L, Zeng Q, Fu G, Feng B, Lin X et al (2020a) Spatial distribution of fluoride in drinking water and health risk assessment of children in typical fluorosis areas in north China. Chemosphere 239:124811

    Article  CAS  Google Scholar 

  • Zhang Z, Cao H, Song N, Zhang L, Cao Y, Tai J (2020b) Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition. Food Chem Toxicol 138:111237

    Article  CAS  Google Scholar 

  • Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24(10):1617–1629

    Article  CAS  Google Scholar 

  • Zuo H, Chen L, Kong M, Qiu L, Lü P, Wu P, Yang Y, Chen K (2018) Toxic effects of fluoride on organisms. Life Sci 198:18–24

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to the Chancellor, Maharishi Markandeshwar Deemed to be University, Mullana, India, for providing required research facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Singh.

Additional information

Editorial responsibility: R Saravanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poonia, T., Singh, N. & Garg, M.C. Contamination of Arsenic, Chromium and Fluoride in the Indian groundwater: a review, meta-analysis and cancer risk assessment. Int. J. Environ. Sci. Technol. 18, 2891–2902 (2021). https://doi.org/10.1007/s13762-020-03043-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-03043-x

Keywords

Navigation