Skip to main content
Log in

Lowering sulfates release from SO42-rich geomaterials: few tests regarding the hydraulic binders’ pathway

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Among the remediation possibilities of oversulfated wastes, the use of hydraulic binders appears to be a promising option. Different binders (highly clinker, moderately and highly slag binders) were used here with the objective to lower the release of sulfates from various oversulfated matrices. Stabilization tests were performed with the objective to assess binders’ efficiency with respect to their chemical composition on the one hand and to characterize the preferential geochemical pathway of stabilization on the other hand. Four sulfated matrices, two natural soils from the Paris region (a and b hereafter), a laboratory model mixture (silt/gypsum) and a crushed concrete matrix were tested in this purpose. The highly clinker binder presented the best SO42− reduction performances on these materials, which justified a specific focus on the behavior of this binder. Physicochemical characterizations (IC, ICP-OES, XRD and TGA) suggested that the lowering of SO42− release was achieved via the precipitation of ettringite and gypsum. These phases were here formed, presumably, via the combination of Ca2+ from the highly clinker binder, and Al3+ cations brought by the destabilization of clayey minerals. This binder was particularly effective for two matrices (Parisian soil (a) and crushed concrete) in which SO42− lowered below both World Health Organization (WHO) and French standards. Stabilization was less conclusive on the other two matrices (Parisian soil (b) and silt/gypsum mixture) which released SO42− above the acceptability thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antao SM, Duane MJ, Hassan I (2002) DTA, TG and sturmanite and ettringite. Can Mineral 40:1403–1409

    Article  CAS  Google Scholar 

  • Bellagh K (2017) Valorisation d’un sol urbain dans le domaine routier: mobilité des polluants dans les sols traités et/ou compactés. Ph.D. thesis Paris-Est University, pp 282.

  • Benatti CT, Tavares CRG, Lenzi E (2009) Sulfate removal from waste chemicals by precipitation. J Environ Manag 90:504–511

    Article  CAS  Google Scholar 

  • Benzerzour M, Amar M, Abriak N (2017) New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment. Constr Build Mater 140:432–444

    Article  CAS  Google Scholar 

  • Blake RE, Walter LM (1996) Effects of organic acids on the dissolution of orthoclase at 80 °C and pH 6. Chem Geol 132:91–102

    Article  CAS  Google Scholar 

  • Boeva NM, Bocharnikova YI, Belousoc PE, Zhigarev VV (2016) Determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis method. J Phys Chem A 90:1525–1529

    CAS  Google Scholar 

  • Borrachero MV, Payà J, Bonilla M, Monzo J (2008) The use of thermogravimetric analysis technique for the characterization of construction materials. The gypsum case. J Thermal Anal Calorim 91:503–509

    Article  CAS  Google Scholar 

  • Chen H, Wang Q (2006) The behavior of organic matter in the process of soft soil stabilization using cement. Bull Eng Geol Env 65:445–448

    Article  CAS  Google Scholar 

  • Clare KE, Sherwood PT (1954) The effect of organic matter on the setting on soil-cement mixtures. J Appl Chem 4:625–630

    Article  CAS  Google Scholar 

  • Clare KE, Sherwood PT (1956) Further studies on the effect of organic matter on the setting of soil-cement mixtures. J Appl Chem 6:317–324

    Article  CAS  Google Scholar 

  • Colas J (2012) Etude de la valorisation des déblais de chantiers de tunnels en granulats à béton. Ph.D. thesis Paris-Est University, pp 282

  • Couvidat J, Benzaazoua M, Chatain V, Bouzahzah H (2016) Environmental evaluation of dredged sediment submitted to a solidification stabilization process using hydraulic binders. Environ Sci Pollut Res 23:17142–17157

    Article  CAS  Google Scholar 

  • Del Arco AI, Jiménez-Gomez F, Guerrero F, Parra G (2014) Shifts across trophic levels as early warning signals of copper sulfate impacts in plankton communities. Appl Ecol Environ Res 12:493–503

    Article  Google Scholar 

  • Del Arco AI, Jiménez-Gomez F, Guerrero F, Parra G (2016) Can a copper sulphate pulse below toxic threshold change plankton communities? Aquat Ecosyst Health Manag 19:64–73

    Article  CAS  Google Scholar 

  • Diamond S (1996) Delayed ettringite formation—Processes and problems. Cement Concr Compos 18:205–215

    Article  CAS  Google Scholar 

  • Dou W, Zhou Z, Jian L-M, Huang R, Tian X, Zhang W, Dongqing C (2017) Sulfate removal from wastewater using ettringite precipitation: magnesium ion inhibition and process optimization. J Environ Manag 196:518–526

    Article  CAS  Google Scholar 

  • Fang P, Tang Z, Chen X-B, Huang JH, Tang ZX, Cen CP (2018) Removal of high-concentration sulfate ions from the sodium alkali FGD wastewater using ettringite precipitation method: factor assessment, feasibility, and prospect. J Chem. https://doi.org/10.1155/2018/1265168

    Article  Google Scholar 

  • Guégan R (2019) Organoclay applications and limits in the environment. C R Chim 22:132–141

    Article  CAS  Google Scholar 

  • Guimares D, Oliveira VA, Leao VA (2016) Kinetic and thermal decomposition of ettringite synthesized from aqueous solutions. J Therm Anal Calorim 124:1679–1689

    Article  CAS  Google Scholar 

  • Hlabela P, Mareee J, Bruinsma D (2007) Barium Carbonate process for sulphate and metal removal from mine water. Mine Water Environ 26:14–22

    Article  CAS  Google Scholar 

  • Huertas FJ, Caballero E, Jiménez de Cisneros C, Huertas F, Linares J (2001) Kinetics of montmorillonite dissolution in granitic solutions. Appl Geochem 16:397–407

    Article  CAS  Google Scholar 

  • Iakovleva E, Makila E, Salonen J, Sitarz M, Silanpaa M (2015) Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water. Chem Eng J 259:364–371

    Article  CAS  Google Scholar 

  • Kabdaslı I, Bilgin A, Tünay O (2016) Sulphate control by ettringite precipitation in textile industry wastewaters. Environ Technol 37:446–451

    Article  CAS  Google Scholar 

  • Kamali S, Bernard F, Abriak N, Degrugillliers P (2008) Marine dregged sediments as new materials resource for road construction. Waste Manag 28:919–928

    Article  Google Scholar 

  • Knauss KG, Wollery TJ (1989) Muscovite dissolution kinetics as a function of pH and time at 70 °C. Geochim Cosmochim Acta 53:1943–1501

    Article  Google Scholar 

  • Koshy N, Singh DN (2016) Fly ash zeolites for water treatment applications. J Environ Chem Eng 4:1460–1472

    Article  CAS  Google Scholar 

  • Ma C, Chen B (2016) Effect of organic matter on strength development of self-compacting earth-based construction stabilized with cement-based composites. Constr Build Mater 123:414–423

    Article  CAS  Google Scholar 

  • Madzivire G, Petril LF, Gitari WM, Ojumu TV, Balfour G (2010) Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Miner Eng 23:252–257

    Article  CAS  Google Scholar 

  • Magnusson S, Lundberg K, Svedberg B, Knutsson S (2015) Sustainable management of excavated soil and rock in urban areas: a literature review. J Cleaner Prod 93:18–25

    Article  Google Scholar 

  • Mahamat Ahmat A, Boussafir M, Le Milbeau C, Guégan R, Valdès J, Guiñez M, Sifeddine A, Le Forestier L (2016) Organic matter-clay interaction along a seawater column of the Eastern Pacific upwelling system (Antofagasta bay, Chile): implications for source rock organic matter preservation. Mar Chem 179:23–33

    Article  CAS  Google Scholar 

  • Mahamat Ahmat A, Thiebault T, Guégan R (2019) Phenolic acids interactions with clay minerals: a spotlight on the adsorption mechanisms of Gallic Acid onto montmorillonite. Appl Clay Sci 180:105188

    Article  CAS  Google Scholar 

  • Mahamat-Ahmat A, Boussafir M, Le Milbeau C, Guégan R, De Oliveira T, Le Forestier L (2017) Organic matter and clay interaction in a meromictic lake: implications for source rock OM preservation (Lac Pavin, Puy-de-Dôme, France). Org Geochem 109:47–57

    Article  CAS  Google Scholar 

  • Maree JP, Hlabela P, Nengovhela R, Geldenhuys AJ, Mbhele N, Nevhulaudzi T, Waanders FB (2004) Treatment of mine water for sulphate and metal removal using barium sulphide. Mine Water Environ 23:195–203

    Article  CAS  Google Scholar 

  • Miraoui M, Zentar R, Abriak N (2012) Road material basis in dredged sediment and basic oxygen furnace steel slag. Constr Build Mater 30:309–319

    Article  Google Scholar 

  • Moudilou E, Guerandel C, Le Rolland B, Delair S (2017) Process for treating polluted soils by means of a sulfoaluminate clinker based hydraulic binder and use thereof for statbilizing soils. United States Patent, Patent No: US 9,676,014 B2

  • Mu J, Perimutter DD (1981) Thermal decomposition of inorganic sulfates and their hydrates. Ind Eng Chem Process Design Dev 20:640–646

    Article  CAS  Google Scholar 

  • Myllykylä E, Tanhua-tyrkkö M, Bouchet A, Tiljander M (2013) Dissolution experiments of Na- and Ca- montmorillonite in groundwater simulants under anaerobic conditions. Clay Miner 48:295–308

    Article  CAS  Google Scholar 

  • Myneni SCB, Traina SJ, Logan TJ (1998) Ettringite solubility and geochemistry of the Ca (OH)2–Al2 (SO4)3–H2O system at 1 atm pressure and 298 K. Chem Geol 148:1–19

    Article  CAS  Google Scholar 

  • Navamani-Kartic N, Aditya Narayana BCH, Arivazhagan M (2018) Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach. J Environ Manag 206:69–76

    Article  CAS  Google Scholar 

  • Oliveira CR, Rubio J (2007) New basis for adsorption of ionic pollutants onto modified zeolites. Miner Eng 20:552–558

    Article  CAS  Google Scholar 

  • Oniyama E, Whalbeck PG (1995) Application of transpiration theory to TGA data: calcium carbonates and zinc chloride. Thermochim Acta 250:41–53

    Article  CAS  Google Scholar 

  • Ouhadi VR, Yong RN (2008) Ettringite formation and behaviour in clayey soils. Appl Clay Sci 42:258–265

    Article  CAS  Google Scholar 

  • Pan Y, Rossabi J, Pan C, Xie X (2019) Stabilization/solidification characteristics of organic clay contaminated by lead when using cement. J Hazard Mater 362:132–139

    Article  CAS  Google Scholar 

  • Pourchez J, Valdvieso F, Grosseau P, Guyonnet R, Guilhot B (2006) Kinetic modelling of the thermal decomposition of ettringite into metaettringite. Cem Concr Res 36:2054–2060

    Article  CAS  Google Scholar 

  • Priyadharshini P, Ramamurthy K, Robinson K (2018) Sustainable reuse of excavation soil in cementitious composites. J Cleaner Prod 176:999–1011

    Article  CAS  Google Scholar 

  • Priyantha N, Perera S (2000) Removal of sulfate, phosphate and colored substances in wastewater effluents using feldspar. Water Resour Manag 14:417–433

    Article  Google Scholar 

  • Rodriguez ET, Garbev K, Merz D, Black L, Richardson IG (2017) Thermal stability of C–S–H phases and applicability of Richardson Groves’ and Richardson C–(A)–S–H–(I) models to synthetic C–S–H. Cem Concr Res 91:45–56

    Article  CAS  Google Scholar 

  • Runtti H, Luukkonen T, Niskanen M, Tuomikoski S, Kangas T, Tynjälä P, Tolonen ET, Sarkkinen M, Kemppainen K, Rämö J, Lassi U (2016) Sulphate removal over barium-modified blast-furnace-slag geopolymer. J Hazard Mater 317:373–384

    Article  CAS  Google Scholar 

  • Runtti H, Tynjälä P, Tuomikoski S, Kangas T, Hu T, Rämö J, Lassi U (2017) Utilisation of barium-modified analcime in sulphate removal: Isotherms, kinetics and thermodynamics studies. J Water Process Eng 16:319–328

    Article  Google Scholar 

  • Salman MS (2009) Removal of sulfate from wastewater by activated carbon. Al-Khwarizmi Eng J 5:72–76

    Google Scholar 

  • Sapsford D, Tufvesson S, Coulton R, Penny T, Williams K (2015) The effect of aluminum source and sludge reclining on the properties of ettringite formed during water treatment. In: Proceedings of the10th international conference on acid rock drainage & IMWA annual conference

  • Satoh H, Ishii T, Owada H (2013) Dissolution of compacted montmorillonite at hyperalkaline pH and 70 °C: in situ VSI and ex situ AFM measurements. Clay Miner 48:285–294

    Article  CAS  Google Scholar 

  • Saussaye L, Hamdoun H, Leleyter L, van Veen E, Coggan J, Rollinson G, Maherzi W, Boutouil M, Baraud F (2017) Trace element mobility in a polluted marine sediment after stabilisation with hydraulic binders. Mar Pollut Bull 110:401–408

    Article  CAS  Google Scholar 

  • Seco A, Miqueleiz L, Prieto E, Marcelino S, Garcia B, Urmeneta P (2017) Sulfate soils stabilization with magnesium-based binders. Appl Clay Sci 135:457–464

    Article  CAS  Google Scholar 

  • Shaw S, Henderson CMB, Komanschek BU (2000) Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem Geol 167(1–2):141–159

    Article  CAS  Google Scholar 

  • Silva AM, Lima RMF, Leao VA (2012) Miner water treatment with lime stone for sulfate removal. J Hazard Mater 221–222:45–55

    Article  CAS  Google Scholar 

  • Siriwardane RV, Poston JA Jr, Fisher EP, Shen MS, Miltz AL (1999) Decomposition of copper, iron (II), iron (III), nickel and zinc: XPS, SEM, DRIFTS, XRD and TGA study. Appl Surf Sci 152:219–236

    Article  CAS  Google Scholar 

  • Spaldon T, Hanculak J, Sestinova O, Findorakova L, Federova E (2017) Barium use for sulphates removal at various pH values. J Pol Mineral Eng Soc 1:65–67

  • Tabrizy VA, Denoyel R, Hamouda AA (2011) Characterization of wettability alteration of calcite, quartz and kaolinite: surface energy analysis. Colloids Surf A Physico Chem Eng Aspects 384:98–108

    Article  CAS  Google Scholar 

  • Tait S, Clarke WP, Keller J, Batstone DJ (2009) Removal of sulfate from high-strength water by cristallisation. Water Res 43:762–772

    Article  CAS  Google Scholar 

  • Tapsoba N, Brouard E, Comparer C, Ech M, Richard N, Levy C (2018) Procédé de traitement de sols pollués par un liant hydraulique à phase mayénite. World Intellectual Property Organization, WO 2018/065447 Al.

  • Taylor HFW, Famy C, Scrivener KL (2001) Delayed ettringite formation. Cem Concr Res 31:683–693

    Article  CAS  Google Scholar 

  • Teng HH, Fenter P, Cheng L, Sturchio NC (2001) Resolving orthoclase dissolution processes with atomic force microscopy and X-ray reflectivity. Geochim Cosmochim Acta 65:3459–3474

    Article  CAS  Google Scholar 

  • Tolonen ET, Rämö J, Lassi U (2015) The effect of magnesium on partial sulphate removal from mine water as gypsum. J Environ Manag 159:143–146

    Article  CAS  Google Scholar 

  • Tolonen ET, Hu T, Ramo J, Lassi U (2016) The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal. J Environ Manag 181:856–862

    Article  CAS  Google Scholar 

  • Tremblay H, Duchesne J, Locat J, Leroueil S (2002) Influence of the nature of organic compounds on fine soil stabilization with cement. Can Geotech J 39:535–546

    Article  CAS  Google Scholar 

  • Trincal V, Thierry V, Maminidy-Pajany Y, Hillier S (2018) Use of hydraulic binders for reducing sulphate leaching: application to gypsiferous soil sampled in Ile-de-France region (France). Environ Sci Pollut Res 25:22977–22997

    Article  CAS  Google Scholar 

  • Vadapalli VRK, Zvimba JN, Mulopo J, Motaung S (2013) Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture. J Environ Sci Health, Part A 48:933–938

    Article  CAS  Google Scholar 

  • Vujakovic AD, Tomasevic-Canovic MR, Dakovic AS, Dondur VT (2000) Adsoprtion of sulphate, hydrogenchromate and hydrogenphosphate anions on surfactant-modified clinoptilolite. Appl Clay Sci 17:265–277

    Article  CAS  Google Scholar 

  • Wang YS, Dai JG, Wang L, Tsang DCW, Poon CS (2018) Influence of lead on stabilization/solidification by ordinary Portland cement and magnesium phosphate cement. Chemosphere 190:90–96

    Article  CAS  Google Scholar 

  • Xia WY, Feng YS, Jin F, Zhang LM, Du YJ (2017) Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr Build Mater 156:199–207

    Article  CAS  Google Scholar 

  • Yan ZQ, Wang ZA, Wang XF, Liu H, Qiu JR (2015) Kinetic model for calcium sulfate decomposition at high temperature. Trans Nonferrous Met Soc China 25:3490–3497

    Article  CAS  Google Scholar 

  • Yariv S, Cross H (2002) Organo-clay complexes and interactions. Marcel Dekker, New York, p 688

    Google Scholar 

  • Zentar R, Wang D, Abriak N, Benzerzour M, Chen W (2012) Utilization of siliceous–aluminous fly ash and cement for solidification of marine sediments. Constr Build Mater 35:856–863

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Eqiom® for supporting this study, as well to Joanna Caboche and Damien Berttrancourt (IMT Lille Douai) for their technical contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mahamat Ahmat.

Additional information

Editorial responsibility: Josef Trögl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahamat Ahmat, A., Mamindy-Pajany, Y. & Nadah, J. Lowering sulfates release from SO42-rich geomaterials: few tests regarding the hydraulic binders’ pathway. Int. J. Environ. Sci. Technol. 18, 2661–2674 (2021). https://doi.org/10.1007/s13762-020-03027-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-03027-x

Keywords

Navigation