Skip to main content
Log in

First principle computation of half metallicity and mechanical properties of a new series of half Heusler alloys KMnZ (Z = B, Si, Ge, As) for spintronics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the framework of density functional theory, the first principle calculations are performed to investigate various physical properties of new series of half Heusler alloys KMnZ (Z = B, Si, Ge, As) by using WIEN2k code. The results of structural parameters show that ferromagnetic state is more stable, with Type 3, configuration than the non-magnetic and antiferromagnetic states for all KMnZ (Z = B, Si, Ge, As) compounds. All considered alloys KMnZ (Z = B, Si, Ge, As) are completely spin polarized and show half-metallic character because of the presence of band gap (BG) in minority-spin channels. The calculated magnetic moments are 3 µB, 4 µB, and 5 µB for KMnB, KMnSi (Ge), and KMnAs, respectively. The values of minority BG for KMnB, KMnSi, KMnGe, and KMnAs are 0.60 eV, 0.85 eV, 1.00 eV, and 1.20 eV, respectively. The origin of their HM gaps is also examined in addition to density of states and band structures. The Curie temperature (TC), within mean field approximation, is also calculated. The calculations for elastic constants and other mechanical parameters are computed to check the mechanical stability which revealed that all other alloys are stable with ductile nature except KMnB. From the results of several physical properties, it can be envisaged that these materials can be used for spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Khodami and F Ahmadian J. Supercond. Novel Magn. 28 3027 (2015).

    Article  Google Scholar 

  2. I Žutić, J Fabian and S D Sarma Rev. Modern Phys. 76 323 (2004).

    Article  ADS  Google Scholar 

  3. M A Behbahani, M Moradi, M Rostami and S Davatolhagh J. Phys. Chem. Solids 92 85 (2016).

    Article  ADS  Google Scholar 

  4. M Afshari, M Moradi and M Rostami J. Phys. Chem. Solids 76 94 (2015).

    ADS  Google Scholar 

  5. M Rostami, M Afshari and M Moradi J. Alloys Comp. 575 301 (2013).

    Google Scholar 

  6. S Idrissi, R Khalladi, S Ziti, N El Mekkaoui, S Mtougui, H Labrim, et al. Physica B: Condens. Matter 562 116 (2019).

    Article  ADS  Google Scholar 

  7. Ikhtiar, S Kasai, Y Takahashi, T Furubayashi, S Mitani and K Hono Appl. Phys. Lett. 108 062401 (2016).

    Article  ADS  Google Scholar 

  8. M Moradi, N Taheri and M Rostami Phys. Lett. A 382 3004 (2018).

    Article  ADS  Google Scholar 

  9. T Nakatani, N Hase, H Goripati, Y Takahashi, T Furubayashi and K Hono IEEE Trans. Magn. 48 1751 (2012).

    Article  ADS  Google Scholar 

  10. S Kämmerer, A Thomas, A Hütten and G Reiss Appl. Phys. Lett. 85 79 (2004).

    Article  ADS  Google Scholar 

  11. J Winterlik, S Chadov, A Gupta, V Alijani, T Gasi, K Filsinger, et al. Adv. Mater. 24 6283 (2012).

    Article  Google Scholar 

  12. T Saito, N Tezuka, M Matsuura and S Sugimoto Appl. Phys. Express 6 103006 (2013).

    Article  ADS  Google Scholar 

  13. M I Khan, H Arshad, M Rizwan, S Gillani, M Zafar, S Ahmed, et al. J. Alloys Comp. 819 152964 (2020).

    Article  Google Scholar 

  14. S Ahmed, M Zafar, M Rizwan, M Khan, H Arshad, J Hai-Bo, et al. Indian J. Phys. (2020).

    Google Scholar 

  15. H Arshad, M Zafar, S Ahmad, M Rizwan, M Khan, S Gillani, et al. Modern Phys. Lett. B 33 1950389 (2019).

    Article  ADS  Google Scholar 

  16. M Gilleßen and R Dronskowski J. Comput. Chem. 30 1290 (2009).

    Article  Google Scholar 

  17. S Singh, M Zeeshan, J v d Brink and H C Kandpal arXiv:1904.02488 (2019).

  18. S Chadov, X Qi, J Kübler, G H Fecher, C Felser and S C Zhang Nat. Mater. 9 541 (2010).

    Article  ADS  Google Scholar 

  19. J M K Al-zyadi, G Gao and K-L Yao J. Magn. Magn. Mater. 378 1 (2015).

    Article  ADS  Google Scholar 

  20. M Zafar, H Sadia, M Rizwan, H Arshad, S Ahmad, S Gillani, Islah-u-din, C Chuan Bao, X-P Wei and M Shakil Chinese. J. Phys. 64 123 (2020).

  21. S Ahmed, M Shakil, M Zafar, M Choudhary and T Iqbal Can. J. Phys. 98 291 (2020).

    Article  ADS  Google Scholar 

  22. O Osafile and J Azi Phys. B Condens. Matter 571 41 (2019).

    Article  ADS  Google Scholar 

  23. J Ma, V I Hegde, K Munira, Y Xie, S Keshavarz, D T Mildebrath, et al. Phys. Rev. B 95 024411 (2017).

    Article  ADS  Google Scholar 

  24. R Ahmad and N Mehmood J. Superconduct. Novel Magn. 31 1751 (2018).

    Article  Google Scholar 

  25. X Wang, Z Cheng and G Liu Materials 10 1078 (2017).

    Google Scholar 

  26. R Ahmad, N Mehmood, S Bukhari, W Nafees and M Arif J. Superconduct. Novel Magn. 31 2617 (2018).

    Article  Google Scholar 

  27. N Mehmood and R Ahmad J. Superconduct. Novel Magn. 31 233 (2018).

    Article  Google Scholar 

  28. M Shakil, S Hassan, H Arshad, M Rizwan, S Gillani, M Rafique, et al. Phys. B Condens. Matter 575 411677 (2019).

    Article  Google Scholar 

  29. M Safavi, M Moradi and M Rostami J. Superconduct. Novel Magn. 30 989 (2017).

    Google Scholar 

  30. H Luo, Z Zhu, G Liu, S Xu, G Wu, H Liu, et al. Phys. B Condens. Matter 403 200 (2008).

    Article  ADS  Google Scholar 

  31. M Ameri, A Touia, R Khenata, Y Al-Douri and H Baltache Optik 124 570 (2013).

    Google Scholar 

  32. L Feng, E Liu, W Zhang, W Wang and G Wu J. Magn. Magn. Mater. 351 92 (2014).

    Article  ADS  Google Scholar 

  33. Y Wu, B Wu, Z Wei, Z Zhou, C Zhao, Y Xiong, et al. Intermetallics 53 26 (2014).

    Article  Google Scholar 

  34. R Umamaheswari, M Yogeswari and G Kalpana J. Magn. Magn. Mater. 350 167 (2014).

    Article  ADS  Google Scholar 

  35. B Nanda and I Dasgupta J. Phys. Condens. Matter 15 7307 (2003).

    ADS  Google Scholar 

  36. S Kervan and N Kervan Intermetallics 46 45 (2014).

    Article  Google Scholar 

  37. R Zhang, L Damewood, Y Zeng, H Xing, C Fong, L Yang, et al. J. Appl. Phys. 122 013901 (2017).

    Article  ADS  Google Scholar 

  38. P Blaha, K Schwarz, G K Madsen, D Kvasnicka and J Luitz Schwarz, Vienna Univ. Technology, Austria (2001).

  39. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996).

    Article  ADS  Google Scholar 

  40. D Mejia-Rodriguez and S Trickey Phys. Rev. B 98 115161 (2018).

    Article  ADS  Google Scholar 

  41. T Graf, C Felser and S S Parkin Progress Solid State Chem. 39 1 (2011).

    Article  Google Scholar 

  42. B Soudini Turk. J. Phys. 33 11 (2009).

    Google Scholar 

  43. X-P Wei, Y-D Chu, X-W Sun, J-B Deng and Y-Z Xing Superlattices Microstruct. 74 70 (2014).

    Article  ADS  Google Scholar 

  44. Y O Ciftci and M Evecen Phase Transit 91 1206 (2018).

    Article  Google Scholar 

  45. M W Mohamedi, A Chahed, A Amar, H Rozale, A Lakdja, O Benhelal, et al. Eur. Phys. J. B 89 267 (2016).

    Article  ADS  Google Scholar 

  46. G Liu, X Dai, H Liu, J Chen, Y Li, G Xiao, et al. Phys. Rev. B 77 014424 (2008).

    Article  ADS  Google Scholar 

  47. I Galanakis and P H Dederichs, Half-metallic alloys: fundamentals and applications. vol. 676 (Berlin: Springer) (2005).

    Book  Google Scholar 

  48. I Galanakis, P Dederichs and N Papanikolaou Phys. Rev. B 66 174429 (2002).

    Article  ADS  Google Scholar 

  49. J Kübler Physica B + C 127 257 (1984).

    ADS  Google Scholar 

  50. N W Ashcroft and N D Mermin Solid State Physics. Saunders College, Philadelphia, PA, 782 (1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shakil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakil, M., Kousar, M., Gillani, S.S.A. et al. First principle computation of half metallicity and mechanical properties of a new series of half Heusler alloys KMnZ (Z = B, Si, Ge, As) for spintronics. Indian J Phys 96, 115–126 (2022). https://doi.org/10.1007/s12648-020-01967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01967-1

Keywords

Navigation