Skip to main content
Log in

Effect of line/point heat source and Hall current with induced magnetic field on free convective flow in vertical walls

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this research, the hydromagnetic natural convection of an incompressible fluid with point heat source by considering the influence of Hall current and induced magnetic field between infinite vertical walls is studied. The Laplace transform procedure is utilized to determine the analytical solutions of the acquired mathematical model with the wavelet function. With the derived solution of velocity, induced magnetic field, temperature field, and induced current density, the flow character is investigated with the influence of the physical parameters (namely Hall current, Hartmann number, and point heat source) for the presented boundary conditions. Also, the skin friction and volumetric flow rate are derived through the velocity expression. Numerical and graphical results are introduced to formalize the solution of the model. The valuable result from the investigation is that an increase in the length of the point heat source leads to enhance both components of induced current density, induced magnetic field, and primary velocity profiles. Moreover, it is noticeable that an enhancement in the Hall current has a reverse connection with both components of the induced current density, induced magnetic field, while the direct connection with the primary velocity component. There are numerous engineering applications such as the metal cutting, grinding, welding, laser hardening of metals, and many others in which the calculation of temperature field is modeled as a problem involving a point heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\( C_{p} \) :

Specific heat at constant pressure

\( d \) :

Distance between walls

\( E_{x} , E_{z} \) :

Electric field in the \( x \)- and \( z\)- directions

\( g \) :

Acceleration due to gravity

\( H_{0} \) :

Constant magnetic field

\( h_{x} , h_{z} \) :

Induced magnetic field in the \( x \)- and \( z\)- directions

\( h_{x}^{*} , h_{z}^{*} \) :

Dimensionless induced magnetic field in the \( x\)- and \( z\)- directions

\( m \) :

Hall current parameter (\( \omega_{e} \tau_{e} \))

\( T \) :

Fluid temperature

\( T_{c} \) :

Temperature of the walls

\( T^{*} \) :

Temperature of the liquid in non-dimensional form

\( u_{x} , u_{z} \) :

Velocity of the liquid in \( x \)- direction and \( z \)- direction

\( U \) :

Characteristic velocity of the liquid

\( u_{x}^{*} ,u_{z}^{*} \) :

Velocity of the liquid in \( x \)- direction and \( z \)- direction in non-dimensional form

\( \beta \) :

Coefficient of thermal expansion

σ :

Electrical conductivity

\( \rho \) :

Fluid density

\( \kappa \) :

Thermal conductivity

\( \mu \) :

Coefficient of viscosity

\( \omega_{e} \) :

Cyclotron frequency

\( \mu_{e} \) :

Magnetic permeability

\( \tau_{e} \) :

Electron collision time

υ :

Kinematic viscosity

\( \tau_{0} \) :

Skin friction coefficient at the left wall

\( \tau_{1} \) :

Skin friction coefficient at the right wall

References

  1. J Hartmann and F Lazarus Mat. Fys. Medd. 15 1 (1937)

    Google Scholar 

  2. J F Osterle and F J Young J. Fluid Mech. 1 512 (1961)

    Article  ADS  Google Scholar 

  3. G Poots Int. J. Heat Mass Transfer 3 1 (1961)

  4. K R Cramer and S I Pai Magnetofluid dynamics for Engineers and applied Physicists (New York: McGraw-Hill) (1973)

    Google Scholar 

  5. C Y Wang ASME J. Heat Trans. 110 508 (1988)

  6. C K Chen and H C Weng J. Heat Transf. 127 1053 (2005)

    Article  Google Scholar 

  7. M Sheikholeslami and H F Oztop Chin. J. Phys. 55 2291 (2017)

    Article  Google Scholar 

  8. M I Khan, T Hayat, M I Khan, M Waqas and A Alsaedi Journal of Physics and Chemistry of Solids 125 153 (2019)

    ADS  Google Scholar 

  9. M Waqas, S Jabeen, T Hayat, M I Khan and A Alsaedi, Journal of Magnetism and Magnetic Materials 485 197 (2019)

    Article  ADS  Google Scholar 

  10. J C Umavathi S Mohiuddin and M A Sheremet Chin. J. Phys. 58 324 (2019)

    Article  Google Scholar 

  11. R K Singh, A K Singh, N C Sacheti and P Chandran Heat Mass Transf. 46 523 (2010)

  12. R K Singh and A K Singh Acta Mechanica Sinica 28 315 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. A Kumar and A K Singh Applied Mathematics and Computation 222 462 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. A Sinha and J C Misra J. Heat Transf. 136 112701 (2014)

    Article  Google Scholar 

  15. Sarveshanand and A K Singh Springer Plus 4 333 (2015)

  16. K Bhattacharyya Frontiers of Chemical Science and Engineering 5 376 (2011)

  17. J C Umavathi and I C Liu Meccanica 48 2221 (2013)

    Article  MathSciNet  Google Scholar 

  18. J C Umavathi and M A Sheremet Eur. J. Mech. B/Fluids 55 132 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. T Hayat, M Khan, A Alsaedi and M I Khan Colloid Polym Sci 295 967(2017)

    Google Scholar 

  20. T Hayat, S Ahmad, M I Khan, and A Alsaedi Physica B: Condensed Matter 537 116 (2018)

    ADS  Google Scholar 

  21. M Waqas, S A Shehzad, T Hayat, M I Khan and A Alsaedi Journal of Physics and Chemistry of Solids 133 45 (2019)

    ADS  Google Scholar 

  22. M I Khan, A Kumar, T Hayat, M Waqas, R Singh Journal of Molecular Liquids 278 677 (2019)

    Article  Google Scholar 

  23. M Sheikholeslami and K Vajravelu Chin. J. Phys. 56 1578 (2018)

    Article  Google Scholar 

  24. F Shah, M Ijaz Khan, T Hayat and A Alsaedi Indian J. Phys. 94 657 (2020)

    Google Scholar 

  25. H Sato Journal of the Physical Society of Japan 16 1427 (1961)

  26. N Datta and R N Jana International Journal of Engineering Science 15 561 (1977)

    Article  ADS  Google Scholar 

  27. A K Singh Astrophysics and Space Science 93 177 (1983)

  28. A K Singh Astrophysics and Space Science 102 213 (1984)

  29. T Hayat Y Wang and K Hutter Int. J. Non-linera Mech. 39 1027 (2004)

    Article  Google Scholar 

  30. L K Saha, M A Hossain and R S R Gorla International Journal of Thermal Sciences 46 790 (2007)

    Google Scholar 

  31. T Hayat and Z Abbas J. Porous Media 10 3550 (2007)

    Google Scholar 

  32. J K Zhang, B W Li and Y Y Chen International Journal of Heat and Mass Transfer 66 838 (2013)

    Article  Google Scholar 

  33. G S Seth and J K Singh Applied Mathematical Modelling 40 2783 (2016)

    Article  MathSciNet  Google Scholar 

  34. T Hayat, M I Khan, A Alsaedi and M I Khan International Communications in Heat and Mass Transfer 89 190 (2017)

    Google Scholar 

  35. T Hayat, M I Khan, S Qayyum and A Alsaedi Colloids and Surfaces A 539 335 (2018)

    Google Scholar 

  36. S Qayyum, M I Khan, T Hayat, A Alsaedi and M Tamoor International Journal of Heat and Mass Transfer 127 933 (2018)

    Google Scholar 

  37. D Kumar, A K Singh and D Kumar Eur. Phys. J. Plus 133 207 (2018)

    Article  Google Scholar 

  38. D Kumar, A K Singh and D Kumar Physica A: Statistical Mechanics and Its Applications 544 123562 (2019)

    Article  Google Scholar 

  39. M Rafiq, H Yasmin, T Hayat and F Alsaadi Chin. J. Phys. 60 207 (2019)

    Google Scholar 

  40. N Dwivedi and A K Singh Heat transfer-Asean Research 49 1402 (2020)

    Article  Google Scholar 

  41. N Dwivedi and A K Singh Heat transfer-Asean Research https://doi.org/10.1002/htj.21818 (2020)

  42. N Dwivedi A K Singh and A Kumar Int. J. Appl. Comput. Math 5 75 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

The author Naveen Dwivedi is thankful to the University Grant Commission, New Delhi for financial support by UGC Ref. No. 1274/PWD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Dwivedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ A_{1} = \left( {y^{*} - a^{*} } \right)^{2} ; $$
$$ A_{2} = \left( {y^{*} - b^{*} } \right)^{2} ; $$
$$ A_{3} = \sinh \left( {\xi y^{*} } \right); $$
$$ A_{4} = \cosh (\xi y^{*} ) - 1; $$
$$ A_{5} = \sinh \left( {\xi y^{*} } \right) - \xi y^{*} ; $$
$$ A_{6} = 2\cosh \left( {\xi \left( {y^{*} - a^{*} } \right)} \right) - \xi^{2} \left( {y^{*} - a^{*} } \right)^{2} - 2; $$
$$ A_{7} = 2\cosh \left( {\xi \left( {y^{*} - b^{*} } \right)} \right) - \xi^{2} \left( {y^{*} - b^{*} } \right)^{2} - 2; $$
$$ A_{8} = 2\cosh (\xi y^{*} ) - \xi^{*^{2}} y^{*^{2}} - 2; $$
$$ A_{9} = 6\sinh \left( {\xi \left( {y^{*} - a^{*} } \right)} \right) - 6\xi \left( {y^{*} - a^{*} } \right) - \xi^{3} \left( {y^{*} - a^{*} } \right)^{3} ; $$
$$ A_{10} = 6\sinh \left( {\xi \left( {y^{*} - b^{*} } \right)} \right) - 6\xi \left( {y^{*} - b^{*} } \right) - \xi^{3} \left( {y^{*} - b^{*} } \right)^{3} ; $$
$$ A_{11} = \sinh \left( \xi \right); $$
$$ A_{12} = \cosh \left( \xi \right); $$
$$ A_{13} = A_{12} - 1; $$
$$ A_{14} = \frac{{A_{11} }}{{A_{13} }}; $$
$$ A_{15} = 2\cosh \left( {\xi \left( {1 - a^{*} } \right)} \right) - \xi^{2} \left( {1 - a^{*} } \right)^{2} - 2; $$
$$ A_{16} = 2\cosh \left( {\xi \left( {1 - b^{*} } \right)} \right) - \xi^{2} \left( {1 - b^{*} } \right)^{2} - 2; $$
$$ A_{17} = 6\sinh \left( {\xi \left( {1 - a^{*} } \right)} \right) - 6\xi \left( {1 - a^{*} } \right) - \xi^{3} \left( {1 - a^{*} } \right)^{3} ; $$
$$ A_{18} = 6\sinh \left( {\xi \left( {1 - b^{*} } \right)} \right) - 6\xi \left( {1 - b^{*} } \right) - \xi^{3} \left( {1 - b^{*} } \right)^{3} ; $$
$$ A_{19} = \sinh \left( \xi \right) - \xi ; $$
$$ A_{20} = \frac{{A_{19} }}{{A_{13} }}; $$
$$ A_{21} = A_{4} + 1; $$
$$ A_{22} = 2\sinh (\xi \left( {1 - a^{*} } \right)) - 2\xi \left( {1 - a^{*} } \right); $$
$$ A_{23} = 2\sinh (\xi \left( {1 - b^{*} } \right)) - 2\xi \left( {1 - b^{*} } \right); $$
$$ A_{24} = 2\cosh \left( \xi \right) - \xi^{2} - 2; $$
$$ A_{25} = 6\sinh \left( {\xi \left( {1 - a^{*} } \right)} \right) - 6\sinh \left( {\xi \left( {1 - b^{*} } \right)} \right) + 6\xi \left( {a^{*} - b^{*} } \right) - \xi^{3} \left( {3a^{*^{2}} - 3b^{*^{2}} - 3a^{*} + 3b^{*} - a^{*^{3}} + b^{*^{3}} } \right); $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, N., Singh, A.K. Effect of line/point heat source and Hall current with induced magnetic field on free convective flow in vertical walls. Indian J Phys 96, 169–179 (2022). https://doi.org/10.1007/s12648-020-01953-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01953-7

Keywords

Navigation