Skip to main content
Log in

A self-similar solution of a fluid with spherical distribution in general relativity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The purpose of this article is to use an algorithm to obtain a non-static solution to the Einstein–Euler equations of a spherically symmetric matter distribution of a perfect fluid. The equations obtained make up a nonlinear system of partial derivative equations (PDE), which in the vast majority of cases is quite difficult to solve, either analytically or numerically. In this context, the spherical symmetry of space-time is very useful since it allows to establish the self-similarity of the solutions. This assumption reduces the PDEs to a set of ordinary differential equations (ODE). Therefore, the self-similarity hypothesis is very powerful in the search for non-static analytical or numerical solutions. The ODEs thus established allow defining a set of variables adjusted to the boundary conditions of the spherical distribution of matter, together with an equation of state (EOS). In this work, Tolman’s V solution has been selected as EOS. Once the numerical integration has been carried out, the variables established in the ODE and some other physical variables determined in the algorithm (density, pressure, radiation, etc.) can present damped oscillations (rebounds), depending on the initial values. This behavior is similar to that found near phase transitions in condensed matter physics, but now the mass distribution plays the role of an order parameter. This result has been obtained in other simulations of numerical relativity, where the PDE obtained from the gravitational field equations are integrated and the expression of an ultrarelativistic fluid \(\left( P=\kappa \,\rho \right) \). It is important to note that there is the possibility of carrying out simulations with other EOS (with electrical charge, anisotropy, etc.) with this algorithm. Many of the calculations to obtain the field equations, such as the conservation equations, were performed using the GRTensorIII computational algebra package, running on Maple 2017; as well as some Maple routines that have been used for these types of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P M Pizzochero arXiv e-prints arXiv:1001.1272 (2010)

  2. G Baym, T Hatsuda, T Kojo, P D Powell, Y Song and T Takatsuka Rep. Prog. Phys. 81 056902 (2018)

    Article  ADS  Google Scholar 

  3. J Bicak ArXiv General Relativity and Quantum Cosmology e-prints (2006)

  4. L Blanchet Living Rev. Relativ. 17 2 (2014)

    Article  ADS  Google Scholar 

  5. T Nakamura, K Oohara, and Y Kojima Prog. Theor. Phys. Suppl. 90 1 (1987)

    Article  ADS  Google Scholar 

  6. R Gomez, J Winicour, and R Isaacson J. Comput. Phys. 98 11 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. R Gómez and J Winicour J. Math. Phys. 33 1445 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. R Gómez and J Winicour Phys. Rev. D 45 2776 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. T W Baumgarte and S L Shapiro Phys. Rev. D 59 024007 (1998)

    Article  ADS  Google Scholar 

  10. P Grandclément and J Novak Living Rev. Relativ. 12 1 (2009)

    Article  ADS  Google Scholar 

  11. T W Baumgarte, P J Montero, I Cordero-Carrión and E Müller Phys. Rev. D 87 044026 (2013)

    Article  ADS  Google Scholar 

  12. T Baumgarte in APS Meeting Abstracts (2014)

  13. T W Baumgarte, P J Montero and E Müller Phys. Rev. D 91 064035 (2015)

    Article  ADS  Google Scholar 

  14. T W Baumgarte and P J Montero Phys. Rev. D 92 124065 (2015)

    Article  ADS  Google Scholar 

  15. J Celestino and T W Baumgarte Phys. Rev. D 98 024053 (2018)

    Article  ADS  Google Scholar 

  16. T W Baumgarte ArXiv e-prints (2018)

  17. M W Choptuik, Phys. Rev. Lett. 70 9 (1993)

    Article  ADS  Google Scholar 

  18. C Gundlach arXiv e-prints arXiv:gr-qc/9712084 (1997)

  19. A Wang Braz. J. Phys. 31 188 (2001)

    Article  ADS  Google Scholar 

  20. C Gundlach Phys. Rev. D 65 084021 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. D Garfinkle Rep. Prog. Phys. 80 016901 (2017)

    Article  ADS  Google Scholar 

  22. C Gundlach Phys. Rev. D 65, 064019 (2002)

    Article  ADS  Google Scholar 

  23. A Koutras and J E F Skea, Comput. Phys. Commun. 115 350 (1998)

    Article  ADS  Google Scholar 

  24. B J Carr and A A Coley, Class. Quantum Gravity 16 R31 (1999)

    Article  ADS  Google Scholar 

  25. B J Carr and A Koutras Astrophys. J. 405 34 (1993)

    Article  ADS  Google Scholar 

  26. B J Carr and A A Coley Gen. Relativ. Gravit. 37 2165 (2005)

    Article  ADS  Google Scholar 

  27. V Medina and N Falcon , Prog. Phys. 14 46 (2018)

    Google Scholar 

  28. G I Barenblatt and Y B Zel’dovich Annu. Rev. Fluid Mech. 4 285 (1972)

    Article  ADS  Google Scholar 

  29. K Tomita Prog. Theor. Phys. 66 2025 (1981)

    Article  ADS  Google Scholar 

  30. C R Evans and J S Coleman Phys. Rev. Lett. 72 1782 (1994)

    Article  ADS  Google Scholar 

  31. T Koike, T Hara and S Adachi Phys. Rev. Lett. 74 5170 (1995)

    Article  ADS  Google Scholar 

  32. S M Wagh and K S Govinder Gen. Relativ. Gravit. 38 1253 (2006)

    Article  ADS  Google Scholar 

  33. S Banerjee Pramana 91 27 (2018)

    Article  ADS  Google Scholar 

  34. R C Tolman Phys. Rev. 55 364 (1939)

    Article  ADS  Google Scholar 

  35. A Patiño and H Rago Lett. Nuovo Cimento 38 321 (1983)

    Article  Google Scholar 

  36. K D Krori, P Borgohain and R Sarma Phys. Rev. D 31 734 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  37. J P de Leon Gen. Relativ. Gravit. 25 865 (1993)

    Article  ADS  Google Scholar 

  38. L Andersson and A Y Burtscher Annales Henri Poincarè 20 813 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. J D Bekenstein, Phys. Rev. D 4 2185 (1971).

    Article  ADS  Google Scholar 

  40. A Patiño and H Rago Astrophys. Space Sci. 257 213 (1997)

    Article  ADS  Google Scholar 

  41. L Herrera, J Jiménez, and G J Ruggeri Phys. Rev. D 22 2305 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  42. M Cosenza, L Herrera, M Esculpi and L Witten Phys. Rev. D 25 2527 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  43. V Medina, L Núñez, H Rago and A Patiño, Can. J. Phys. 66 981 (1988)

    Article  ADS  Google Scholar 

  44. W Barreto and A da Silva, Gen. Relativ. Gravit. 28 735 (1996)

    Article  ADS  Google Scholar 

  45. A di Prisco, N Falcón, L Herrera, M Esculpi and N O Santos, Gen. Relativ. Gravit. 29 1391 (1997)

    Article  ADS  Google Scholar 

  46. W Barreto, B Rodríguez and H Martínez Astrophys. Space Sci. 282 581 (2002)

    Article  ADS  Google Scholar 

  47. L Herrera, W Barreto, A di Prisco and N O Santos Phys. Rev. D 65 104004 (2002)

    Article  ADS  Google Scholar 

  48. J M Martín-García and C Gundlach Phys. Rev. D 59 064031 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Medina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, V. A self-similar solution of a fluid with spherical distribution in general relativity. Indian J Phys 96, 317–328 (2022). https://doi.org/10.1007/s12648-020-01959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01959-1

Keywords

Navigation