Skip to main content
Log in

Optical properties analysis of the new (C9H14N)3BiCl6 compound by UV–visible measurements

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this report, an investigation of the optical properties of the (C9H14N)3BiCl6 hybrid compound by UV–Visible spectroscopy was detailed. The measurements were taken at room temperature in the range 200 to 2400 nm. The optical direct band-gap Eg, determined by means of reflectance data, by absorbance data or by Tauc's method, was evaluated at (3.391 ± 0.009) eV, (3.409 ± 0.009) eV and (3.422 ± 0.102) eV, respectively. Furthermore, the estimated Urbach energy (290 ± 7) meV proves the high disordered system. The dependence of optical constants such as the extinction coefficient k and the optical conductivity on the incident wavelength was analyzed. Besides, the skin depth shows that this sample has a screen effect for UV radiation. The refractive index, estimated around 1.52 in the visible domain, submits to the Cauchy relation. The dielectric study portrays the low values of the imaginary part of the complex dielectric constant. These losses are mainly in the bulk rather than the surface of the material. Based on the Wemple Di-Domenico model, the dispersion parameters E0 and Ed relative to the (C9H14N)3BiCl6 sample were calculated. These encouraging results prompt us to propose this compound as a basic material for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M Wojtas, A Gagor, O Czupinski, A Pietraszko and R Jakubas J. Solid State Chem. 182 3021 (2009)

    Article  ADS  Google Scholar 

  2. R Pardo, M Zayat and D Levy Chem. Soc. Rev. 40 672 (2011)

    Article  Google Scholar 

  3. Hela Ferjani Crystals 10 397 (2020)

    Article  Google Scholar 

  4. J R Sorg, T Wehner, P R Matthes, R Sure, S Grimme and J K Müller-Buschbaum Heine Dalton. Trans. 47 7669 (2018)

    Article  Google Scholar 

  5. S B Ali, V Ferretti, L D Bianco, F Spizzo and M Belhouchet J. Mol. Struct. 1199 126986 (2020)

    Article  Google Scholar 

  6. D B Mitzi Chem. Mater. 13 3283 (2001)

    Article  Google Scholar 

  7. H Eickmeier, B Jaschinski, A Hepp, J Nuss, H Reuter, R Blachnik Z. Naturforsch Teil. B 54 305 (1999)

  8. R Jakubas Solid State Commun. 69 267 (1989)

    Article  ADS  Google Scholar 

  9. P Carpentier, J Lefebvre and R Jakubas Acta Crystallogr. B 51 167 (1995)

    Article  Google Scholar 

  10. L C Lee, T N Huq, J L MacManus-Driscoll and R L Z Hoye Apl. Mater. 6 084502 (2018)

    Article  ADS  Google Scholar 

  11. J Tarasiewicz, R Jakubas and J Baran J. Vib. Spectrosc. 40 55 (2006)

    Article  Google Scholar 

  12. G Bator, Th Zeegers-Huyskens, R Jakubas and J Zaleski J. Mol. Struct. 570 61 (2001)

    Article  ADS  Google Scholar 

  13. A Samet, H Boughzala, H Khemakhem and Y Abid J. Mol. Struct. 984 23 (2010)

    Article  ADS  Google Scholar 

  14. Bi Wenhua, N Leblanc, N Mercier, P Auban-Senzier and C Pasquier Chem. Mater. 21 4099 (2009)

    Article  Google Scholar 

  15. M Essid, Z Aloui, V Ferretti, S Abid, F Lefebvre, M Rzaigui and C Ben Nasr Inorg. Chim. Acta 457 122 (2017)

    Article  Google Scholar 

  16. K Kahouli, A kahouli, K Khirouni, S Chaabouni, J. Mol. Struct 1199 126944 (2020)

  17. R Mguedla, A Ben Jazia Kharrat, O Taktak, H Souissi, S Kammoun, K Khirouni and W Boujelben Opt. Mater. 101 109742 (2020)

    Article  Google Scholar 

  18. R E Marotti, D N Guerra, C Bello, G Machadoa and E A Dalchiele Sol. En. Mat. Sol. Cel. 82 85 (2004)

    Article  Google Scholar 

  19. S H Wemple and M Didomenico Phys. Rev. B 3 1338 (1971)

    Article  ADS  Google Scholar 

  20. A Ben Jazia Kharrat, K Kahouli, S Chaabouni, accepted for publication in Bulletin of Materials Science

  21. Z Wang, Q Dan, R Y Zhao, R D Xu, G N Liu and C Li Inorg. Chem. Commun. 111 107632 (2020)

    Article  Google Scholar 

  22. I Dakhlaoui, K Karoui, F Jomni, Appl Organometal Chem. 34 (2020). https://doi.org/10.1002/aoc.5545

  23. N Mahfoudh, K Karouia, K Khirouni and A Ben Rhaiem Physica B: Condensed Matter 554 126 (2019)

    Article  ADS  Google Scholar 

  24. H Nagabhushana, B M Nagabhushana, M Kumar, H B Premkumar, C Shivakumara and R P S Chakradhar Phil. Mag. 26 3567 (2010)

    Article  ADS  Google Scholar 

  25. G V Makhnovets, G L Myronchuk, L V Piskach, B V Vidrynskyi and A H Kevshyn Ukr. J. Phys. Opt. 19 49 (2018)

    Article  Google Scholar 

  26. S Gagandeep, B S L Kulwant and H S Sahota Nucl. Sci. Eng. 134 208 (2000)

    Article  Google Scholar 

  27. A H Ammar, A A M Farag and M S Abo-Ghazala J. Alloys Compd. 694 752 (2017)

    Article  Google Scholar 

  28. R Lefi, F Ben Naser and H Guermazi J. Alloys. Compd. 696 1244 (2017)

    Article  Google Scholar 

  29. Y Chen, D M Bagnall, H J Koh, K T Park, K Hiraga, Z Q Zhu and T Yao Appl. Phys 84 3912 (1998)

    Article  Google Scholar 

  30. G D Cody Hydrogenated Amorphous Silicon, Part B, Optical Properties. In: J I Pankove (ed.) Semiconductors and Semimetals , vol. 21. Academic Press Inc, Orlando (1984)

    Google Scholar 

  31. Z Yang, K P Homewood, M S Finney, M A Harry and K J Reeson J. Appl. Phys. 78 1958 (1995)

    Article  ADS  Google Scholar 

  32. S Husain, A O A Keelani and W Khan Nano-Structures & Nano-Objects 15 17 (2018)

    Article  Google Scholar 

  33. M V Kurik Phys. stat. sol. (a). 8 9 (1971)

    Article  ADS  Google Scholar 

  34. W Martienssen J. Phys. Chem. Sol. 2 257 (1957)

    Article  ADS  Google Scholar 

  35. A S Hassanien and A A Akl J. Alloy. Compd. 648 280 (2015)

    Article  Google Scholar 

  36. H R Shakur Physica E 44 641 (2011)

    Article  ADS  Google Scholar 

  37. E Caponetti, L Pedone, D Chillura Martino, V Panto and V TurcoLiveri Mater. Sci. Eng. C 23 531 (2003)

    Article  Google Scholar 

  38. N Tounsi, A Barhoumi, F C Akkari, M Kanzari, H Guermazi and S Guermazi Vaccum 121 9 (2015)

    Article  ADS  Google Scholar 

  39. S R Chalana, V Ganesan and V P Mahadevan Pillai AIP Advances 5 107207 (2015)

    Article  ADS  Google Scholar 

  40. M Abdel Rafeaa, A A M Farag and N Roushdy J. Alloys Compd. 485 660 (2009)

    Article  Google Scholar 

  41. P Sharma, A Dahshan and K A Aly J. Alloys Compd. 616 323 (2014)

    Article  Google Scholar 

  42. H Kchaou, K Karoui, K Khirouni and A Ben Rhaiem J. Alloys Compd. 728 936 (2017)

    Article  Google Scholar 

  43. M A Majeed Khan, M Wasi Khan, M Alhoshan, M S AlSalhi and A S Aldwayyan Appl Phys A 100 45 (2010)

    Article  ADS  Google Scholar 

  44. J I Pankov Optical process in semiconductors. (NewYork: Dover Publications) (1975)

    Google Scholar 

  45. A K Wolaton and T S Moss Proc. Phys. Soc. 81 509 (1963)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Jazia Kharrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahouli, K., Kharrat, A.B.J. & Chaabouni, S. Optical properties analysis of the new (C9H14N)3BiCl6 compound by UV–visible measurements. Indian J Phys 95, 2797–2805 (2021). https://doi.org/10.1007/s12648-020-01942-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01942-w

Keywords

Navigation