Skip to main content

Advertisement

Log in

Intraspecific differences of Asian/Australian Phragmites australis subgroups reveal no potentially invasive traits

  • WETLAND ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phragmites australis is a cosmopolitan plant species with high intraspecific diversity and phenotypic plasticity. Due to its variability and large ecological niche breadth, subgroups of P. australis have become invasive in North America, and this invasion has been recognized late. While this cryptic invasion on the American continent has received much attention, little is known about the potential invasiveness of other subgroups, especially within Asian/Australian P. australis. We therefore compared the performance of three subgroups within the Asian/Australian group: a freshwater (CN) and an estuarine (YRD) subgroup collected in China and a genetically closely related subgroup collected from Australia (FEAU), grown in two common gardens in China. Our results showed that the FEAU subgroup had no strong invasive potential, as its total biomass, height, shoot number, specific leaf area, and stomatal conductance were lower than that of the two native subgroups. All three subgroups responded similarly with most traits to the different climates of the gardens, albeit with different response strength, expressed as phenotypic plasticity indices. The potential cryptic invasion risk of the FEAU subgroup in China seems to be low, since its functional traits showed low competitiveness and most traits with the lowest plasticity occurred in FEAU. However, caution is still advised, because other invasive mechanisms, such as enemy release or the performance under extreme environmental conditions were not tested in our study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadia, J., 1992. Leaf responses to Fe deficiency: a review. Journal of Plant Nutrition 15(10): 1699–1713.

    CAS  Google Scholar 

  • Abramoff, M. D., P. J. Magalhaes & S. J. Ram, 2004. Image processing with ImageJ. Biophotonics International 11: 36–42.

    Google Scholar 

  • Albert, A., J. Brisson, F. Belzile, J. Turgeon & C. Lavoie, 2015. Strategies for a successful plant invasion: the reproduction of Phragmites australis in north-eastern North America. Journal of Ecology 103(6): 1861–1870.

    Google Scholar 

  • Arve, L. E. & S. Torre, 2015. Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves. Functional Plant Biology 42(4): 376–386.

    CAS  PubMed  Google Scholar 

  • Aspinwall, M. J., D. B. Lowry, S. H. Taylor, T. E. Juenger, C. V. Hawkes, M. V. Johnson, J. R. Kiniry & P. A. Fay, 2013. Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: evidence for a functional trait syndrome. New Phytologist 199(4): 966–980.

    CAS  Google Scholar 

  • Banta, J. A., I. M. Ehrenreich, S. Gerard, L. Chou, A. Wilczek, J. Schmitt, P. X. Kover & M. D. Purugganan, 2012. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecology Letters 15(8): 769–777.

    PubMed  Google Scholar 

  • Bastlová, D., H. Čížková, M. Bastl & J. Květ, 2004. Growth of Lythrum salicaria and Phragmites australis plants originating from a wide geographical area: response to nutrient and water supply. Global Ecology and Biogeography 13(3): 259–271.

    Google Scholar 

  • Bastlová, D., M. Bastl, H. Čížková & J. Květ, 2006. Plasticity of Lythrum salicaria and Phragmites australis growth characteristics across a European geographical gradient. Hydrobiologia 570(1): 237–242.

    Google Scholar 

  • Baythavong, B. S. & M. L. Stanton, 2010. Characterizing selection on phenotypic plasticity in response to natural environmental heterogeneity. Evolution; International Journal of Organic Evolution 64(10): 2904–2920.

    PubMed  Google Scholar 

  • Bespalaya, Y. V., I. N. Bolotov, O. V. Aksenova, M. Y. Gofarov, A. V. Kondakov, I. V. Vikhrev & M. V. Vinarski, 2018. DNA barcoding reveals invasion of two cryptic Sinanodonta mussel species (Bivalvia: Unionidae) into the largest Siberian river. Limnologica 69: 94–102.

    Google Scholar 

  • Bhattarai, G. P., L. A. Meyerson, J. Anderson, D. Cummings, W.J. Allen & J.T. Cronin, 2017. Biogeography of a plant invasion: genetic variation and plasticity in latitudinal clines for traits related to herbivory. Ecological Monographs 87(1): 57–75.

    Google Scholar 

  • Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13: 115–155.

    Google Scholar 

  • Brand, J. J. & D. W. Becker, 1984. Evidence for direct roles of calcium in photosynthesis. Journal of Bioenergetics and Biomembranes 16: 239–249.

    CAS  PubMed  Google Scholar 

  • Brix, H., S. Ye, E. A. Laws, D. Sun, G. Li, X. Ding, H. Yuan, G. Zhao, J. Wang & S. Pei, 2014. Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China. Ecological Engineering 73: 760–769.

    Google Scholar 

  • Byrne, M. P. & P. A. O’Gorman, 2018. Trends in continental temperature and humidity directly linked to ocean warming. Proceedings of the National Academy of Sciences of the United States of America 115(19): 4863–4868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan, J. S., R. N. Hager, J. P. Megonigal & T. J. Mozdzer, 2015. Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environmental Research Letters 10: 1–12.

    Google Scholar 

  • Chambers, R. M., L. A. Meyerson & K. Saltonstall, 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64(3): 261–273.

    Google Scholar 

  • Chambers, R. M., D. T. Osgood, D. J. Bart & F. Montalto, 2003. Phragmites australis invasion and expansion in tidal wetlands: interactions among salinity, sulfide, and hydrology. Estuaries 26(2): 398–406.

    CAS  Google Scholar 

  • Choi, W. & K. Y. Kim, 2018. Physical mechanism of spring and early summer drought over North America associated with the boreal warming. Scientific Reports 8(1): 7533.

    PubMed  PubMed Central  Google Scholar 

  • Clements, D. R. & A. Ditommaso, 2011. Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Research 51(3): 227–240.

    Google Scholar 

  • Clevering, O. A., 1998. An investigation into the effects of nitrogen on growth and morphology of stable and die-back populations of Phragmites australis. Aquatic Botany 60(1): 11–25.

    Google Scholar 

  • Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. van der Heijden, J. G. Pausas & H. Poorter, 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335–380.

    Google Scholar 

  • Cramer, M. D., H.-J. Hawkins & G. A. Verboom, 2009. The importance of nutritional regulation of plant water flux. Oecologia 161: 15–24.

    PubMed  Google Scholar 

  • Cronin, J. T., G. P. Bhattarai, W. J. Allen & L. A. Meyerson, 2015. Biogeography of a plant invasion: plant–herbivore interactions. Ecology 96(4): 1115–1127.

    PubMed  Google Scholar 

  • Cronin, J. T., E. Kiviat, L. A. Meyerson, G. P. Bhattarai & W. J. Allen, 2016. Biological control of invasive Phragmites australis will be detrimental to native P. australis. Biological Invasions 18(9): 2749–2752.

    Google Scholar 

  • Deng, X., W.-H. Ye, H.-L. Feng, Q.-H. Yang, H.-L. Cao, K.-Y. Xu & Y. Zhang, 2004. Gas Exchange Characteristics of the Invasive Species Mikania Micrantha and its Indigenous Congener M. Cordata (Asteraceae) in South China. Botanical Bulletin of Academia Sinica 45: 213–220.

    Google Scholar 

  • Duan, X.-N., X.-K. Wang, Z.-Y. Ouyang, H. Miao & R. Guo, 2004. The biomass of Phragmites australis and its influencing factors in Wuliangsuhai. Acta Phytoecologica Sinica 28: 246–251. [in Chinese].

    Google Scholar 

  • Eller, F. & H. Brix, 2012. Different genotypes of Phragmites australis show distinct phenotypic plasticity in response to nutrient availability and temperature. Aquatic Botany 103: 89–97.

    Google Scholar 

  • Eller, F., H. Skalova, J. S. Caplan, G. P. Bhattarai, M. K. Burger, J. T. Cronin, W. Y. Guo, X. Guo, E. L. Hazelton, K. M. Kettenring, C. Lambertini, M. K. Mccormick, L. A. Meyerson, T. J. Mozdzer, P. Pyšek, B. K. Sorrell, D. F. Whigham & H. Brix, 2017. Cosmopolitan species as ecophysiological models for responses to global change: the common reed Phragmites australis. Frontiers in Plant Science 8: 1833.

    PubMed  PubMed Central  Google Scholar 

  • Frevola, D. M. & S. M. Hovick, 2019. The independent effects of nutrient enrichment and pulsed nutrient delivery on a common wetland invader and its native conspecific. Oecologia 191(2): 447–460.

    PubMed  Google Scholar 

  • Geller, J. B., J. A. Darling & J. T. Carlton, 2010. Genetic perspectives on marine biological invasions. Annual review of marine science 2: 367–393.

    PubMed  Google Scholar 

  • Gerlach, J. D., B. S. Bushman, J. K. Mckay & H. Meimberg, 2009. Taxonomie confusion permits the unchecked invasion of vernal pools in California by low mannagrass vena deelinafa). Invasive Plant Science & Management 2(1): 92–97.

    Google Scholar 

  • Ghalambor, C. K., J. K. McKay, S. P. Carroll & D. N. Reznick, 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21(3): 394–407.

    Google Scholar 

  • Gitelson, A. A., C. Buschmann & H. K. Lichtenthaler, 1999. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment 69(3): 296–302.

    Google Scholar 

  • Guo, W. Y., C. Lambertini, X. Z. Li, L. A. Meyerson & H. Brix, 2013. Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche. Global Change Biology 19(11): 3406–3422.

    PubMed  Google Scholar 

  • Hansen, D. L., C. Lambertini, A. Jampeetong & H. Brix, 2007. Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquatic Botany 86: 269–279.

    Google Scholar 

  • Henn, J. J., S. Yelenik & E. I. Damschen, 2019. Environmental gradients influence differences in leaf functional traits between native and nonnative plants. Oecologia 191: 397–409.

    PubMed  Google Scholar 

  • Hetherington, A. M. & F. I. Woodward, 2003. The role of stomata in sensing and driving environmental change. Nature 424(6951): 901–908.

    CAS  PubMed  Google Scholar 

  • Hurry, C. R., E. A. James & R.M. Thompson, 2013. Connectivity, genetic structure and stress response of Phragmites australis: Issues for restoration in a salinising wetland system. Aquatic Botany 104: 138–146.

    Google Scholar 

  • Jaric, I., T. Heger, F. C. Monzon, J. M. Jeschke, I. Kowarik, K. R. McConkey, P. Pyšek, A. Sagouis & F. Essl, 2019. Crypticity in biological invasions. Trends in Ecology and Evolution 34(4): 291–302.

    PubMed  Google Scholar 

  • Kalaji, H. M., A. Oukarroum, V. Alexandrov, M. Kouzmanova, M. Brestic, M. Zivcak, I. A. Samborska, M. D. Cetner, S. I. Allakhverdiev & V. Goltsev, 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiology and Biochemistry 81: 16–25.

    CAS  PubMed  Google Scholar 

  • Karunaratne, S., T. Asaeda & K. Yutani, 2003. Growth performance of Phragmites australis in Japan: influence of geographic gradient. Environmental and Experimental Botany 50(1): 51–66.

    Google Scholar 

  • Keane, R. M. & M. J. Crawley, 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17(4): 164–170.

    Google Scholar 

  • Kulmatiski, A., K. H. Beard, L. A. Meyerson, J. R. Gibson & K. E. Mock, 2010. Nonnative Phragmites australis invasion into Utah wetlands. Western North American Naturalist 70(4): 541–552.

    Google Scholar 

  • Kupper, P., G. Rohula, L. Inno, I. Ostonen, A. Sellin & A. Sõber, 2017. Impact of high daytime air humidity on nutrient uptake and night-time water flux in silver birch, a boreal forest tree species. Regional Environmental Change 17(7): 2149–2157.

    Google Scholar 

  • Laing, W., D. Greer, O. Sun, P. Beets, A. Lowe & T. Payn, 2000. Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytologist 146(1): 47–57.

    CAS  Google Scholar 

  • Lamarque, L. J., C. J. Lortie, A. J. Porté & S. Delzon, 2015. Genetic differentiation and phenotypic plasticity in life-history traits between native and introduced populations of invasive maple trees. Biological Invasions 17(4): 1109–1122.

    Google Scholar 

  • Lambertini, C., B. K. Sorrell, T. Riis, B. Olesen & H. Brix, 2012. Exploring the borders of European Phragmites within a cosmopolitan genus. AoB PLANTS. https://doi.org/10.1093/aobpla/pls020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambertini, C., W. Y. Guo, S. Ye, F. Eller, X. Guo, X. Z. Li, B. K. Sorrell, M. Speranza & H. Brix, 2020. Phylogenetic diversity shapes salt tolerance in Phragmites australis estuarine populaions in East China. Scientific Reports 10: 17645.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavergne, S. & J. Molofsky, 2007. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proceedings of the National Academy of Sciences of the United States of America 104(10): 3883–3888.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leuschner, C., 2002. Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high VPD levels. Flora 197(4): 262–274.

    Google Scholar 

  • Marks, M., B. Lapin & J. Randall, 1994. Phragmites australis (P. communis): threats, management and monitoring. Natural Areas Journal 14(4): 285–294.

    Google Scholar 

  • Marrone, F., S. Lo Brutto & M. Arculeo, 2011. Cryptic invasion in Southern Europe: the case of Ferrissia fragilis (Pulmonata: Ancylidae) Mediterranean populations. Biologia 66(3): 484–490.

    Google Scholar 

  • Matzek, V., 2011. Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biological Invasions 13(12): 3005.

    Google Scholar 

  • McAlpine, K. G., L. K. Jesson & D. S. Kubien, 2008. Photosynthesis and water-use efficiency: a comparison between invasive (exotic) and non-invasive (native) species. Austral Ecology 33(1): 10–19.

    Google Scholar 

  • McDowell, S. C. L., 2002. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany 89(9): 1431–1438.

    PubMed  Google Scholar 

  • Meadows, R. E. & K. Saltonstall, 2007. Distribution of native and non-native populations of Phragmites australis in oligohaline marshes of the Delmarva Peninsula and southern New Jersey. Journal of the Torrey Botanical Society 134(1): 99–107.

    Google Scholar 

  • Messier, J., M. J. Lechowicz, B. J. McGill, C. Violle & B. J. Enquist, 2017. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology 105(6): 1775–1790.

    Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat & S. Findlay, 2000. A comparison of Phragmites australisin freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8(2): 89–103.

    CAS  Google Scholar 

  • Meyerson, L. A., K. Saltonstall, R. M. Chambers, B. R. Silliman, M. D. Bertness & D. Strong, 2009. Phragmites australis in Eastern North America: A Historical and Ecological Perspective. Univeristy of California Press, Berkeley.

    Google Scholar 

  • Meyerson, L. A., C. Lambertini, M. K. Mccormick & D. F. Whigham, 2012. Hybridization of common reed in North America? The answer is blowing in the wind. AoB Plants 2012(1): pls022.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyerson, L. A., J. T. Cronin & P. Pyšek, 2016. Phragmites australis as a model organism for studying plant invasions. Biological Invasions 18(9): 2421–2431.

    Google Scholar 

  • Minchinton, T. E., 2002. Precipitation during El Niño correlates with increasing spread of Phragmites australis in New England, USA, coastal marshes. Marine Ecology Progress 242(1): 305–309.

    Google Scholar 

  • Monty, A., J. P. Bizoux, J. Escarré & G. Mahy, 2013. Rapid plant invasion in distinct climates involves different sources of phenotypic variation. PLoS ONE 8(1): e55627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mooney, H. A. & R. J. Hobbs, 2000. Invasive Species in a Changing World. Island Press, Washington.

    Google Scholar 

  • Moroney, J. R., P. W. Rundel & V. L. Sork, 2013. Phenotypic plasticity and differentiation in fitness-related traits in invasive populations of the Mediterranean forb Centaurea melitensis (Asteraceae). American Journal of Botany 100(10): 2040–2051.

    PubMed  Google Scholar 

  • Morris, K., P. I. Boon, E. J. Raulings & S. D. White, 2008. Floristic shifts in wetlands: the effects of environmental variables on the interaction between Phragmites australis (Common Reed) and Melaleuca ericifolia (Swamp Paperbark). Marine and Freshwater Research 59(3): 187–204.

    Google Scholar 

  • Mozdzer, T. J. & J. P. Megonigal, 2012. Jack-and-master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. PLoS ONE 7(10): e42794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mozdzer, T. J., J. Brisson & E. L. G. Hazelton, 2013. Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages. AoB Plants 5: plt048.

    PubMed Central  Google Scholar 

  • Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.

    CAS  PubMed  Google Scholar 

  • Nicotra, A. B., O. K. Atkin, S. P. Bonser, A. M. Davidson, E. J. Finnegan, U. Mathesius, P. Poot, M. D. Purugganan, C. L. Richards, F. Valladares & M. van Kleunen, 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15(12): 684–692.

    CAS  PubMed  Google Scholar 

  • Ocheltree, T. W., J. B. Nippert & P. V. V. Prasad, 2012. Changes in stomatal conductance along grass blades reflect changes in leaf structure. Plant, Cell and Environment 35(6): 1040–1049.

    CAS  PubMed  Google Scholar 

  • Osman, K. T., 2013. Plant nutrients and soil fertility management. Soils 2013: 129–159.

    Google Scholar 

  • Packer, J. G., L. A. Meyerson, D. M. Richardson, G. Brundu, W. J. Allen, G. P. Bhattarai, H. Brix, S. Canavan, S. Castiglione, A. Cicatelli, J. Čuda, J. T. Cronin, F. Eller, F. Guarino, W.-H. Guo, W.-Y. Guo, X. Guo, J. L. Hierro, C. Lambertini, J. Liu, V. Lozano, T. J. Mozdzer, H. Skálová, D. Villarreal, R.-Q. Wang & P. Pyšek, 2017. Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions 19(4): 1081–1096.

    Google Scholar 

  • Pauls, S. U., C. Nowak, M. Balint & M. Pfenninger, 2013. The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22(4): 925–946.

    PubMed  Google Scholar 

  • Philipp, K. R. & R. T. Field, 2005. Phragmites australis expansion in Delaware Bay salt marshes. Ecological Engineering 25(3): 275–291.

    Google Scholar 

  • Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52(3): 273–288.

    Google Scholar 

  • Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot & L. Mommer, 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193(1): 30–50.

    CAS  Google Scholar 

  • Pyšek, P., H. Skálová, J. Čuda, W.-Y. Guo, J. Doležal, O. Kauzál, C. Lambertini, K. Pyšková, H. Brix & L. A. Meyerson, 2019. Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia 91: 51–75.

    Google Scholar 

  • Pyšek, P., J. Čuda, P. Šmilauer, H. Skálová, Z. Chumová, C. Lambertini, M. Lučanová, H. Ryšavá, P. Trávníček, K. Šemberová & L. A. Meyerson, 2020. Competition among native and invasive Phragmites australis populations: an experimental test of the effects of invasion status, genome size, and ploidy level. Ecology and Evolution 10: 1106–1118.

    PubMed  PubMed Central  Google Scholar 

  • Ren, L., X. Guo, S. Liu, T. Yu, W. Guo, R. Wang, S. Ye, C. Lambertini, H. Brix & F. Eller, 2020. Intraspecific variation in Phragmites australis: Clinal adaption of functional traits and phenotypic plasticity vary with latitude of origin. Journal of Ecology 108(6): 2531–2543.

    Google Scholar 

  • Rice, D., J. Rooth & J. C. Stevenson, 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20(2): 280–299.

    Google Scholar 

  • Rüegg, S., U. Raeder, A. Melzer, G. Heubl & C. Bräuchler, 2017. Hybridisation and cryptic invasion in Najas marina L. (Hydrocharitaceae)? Hydrobiologia 784(1): 381–395.

    Google Scholar 

  • Sala, O. E., F. S. Chapin 3rd, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774.

    CAS  PubMed  Google Scholar 

  • Saltonstall, K., 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America 99(4): 2445–2449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saltonstall, K., P. L. Peterson & R. J. Soreng, 2004. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA 21(2): 683–692.

    Google Scholar 

  • Silliman, B. R. & M. D. Bertness, 2004. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conservation Biology 18(5): 1424–1434.

    Google Scholar 

  • Silva, L. C. R. & H. Lambers, 2020. Soil–plant–atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant and Soil. https://doi.org/10.1007/s11104-020-04427-1.

    Article  Google Scholar 

  • Tulbure, M. G. & C. A. Johnston, 2010. Environmental conditions promoting non-native Phragmites australis expansion in Great Lakes coastal wetlands. Wetlands 30(3): 577–587.

    Google Scholar 

  • Tulbure, M. G., C. A. Johnston & D. L. Auger, 2007. Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha. Journal of Great Lakes Research 33: 269–279.

    Google Scholar 

  • Uddin, M. N., R. W. Robinson, A. Buultjens, M. A. Y. Al Harun & S. H. Shampa, 2017. Role of allelopathy of Phragmites australis in its invasion processes. Journal of Experimental Marine Biology and Ecology 486: 237–244.

    Google Scholar 

  • Valladares, F., D. Sanchez-Gomez & M. A. Zavala, 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology 94(6):1103–1116.

    Google Scholar 

  • Valladares, F., S. Matesanz, F. Guilhaumon, M. B. Araujo, L. Balaguer, M. Benito-Garzon, W. Cornwell, E. Gianoli, M. van Kleunen, D. E. Naya, A. B. Nicotra, H. Poorter & M. A. Zavala, 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17(11): 1351–1364.

    PubMed  Google Scholar 

  • van Kleunen, M., E. Weber & M. Fischer, 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13(2): 235–245.

    PubMed  Google Scholar 

  • Vasquez, E. A., E. P. Glenn, J. J. Brown, G. R. Guntenspergen & S. G. Nelson, 2005. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Marine Ecology Progress Series 298(1): 1–8.

    Google Scholar 

  • Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.

    Google Scholar 

  • Vitousek, P. M., C. M. D’Antonio, L. L. Loope & R. Westbrooks, 1996. Biological invasions as global environmental change. American Scientist 84(5): 468–478.

    Google Scholar 

  • Walck, J. L., J. M. Baskin & C. C. Baskin, 2001. Why is Solidago shortii narrowly endemic and S. altissima geographically widespread? A comprehensive comparative study of biological traits. Journal of Biogeography 28(10): 1221–1237.

    Google Scholar 

  • Wang, I. J., R. E. Glor & J. B. Losos, 2013. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters 16(2): 175–182.

    PubMed  Google Scholar 

  • White, T. A., B. D. Campbell, P. D. Kemp & C. L. Hunt, 2001. Impacts of extreme climatic events on competition during grassland invasions. Global Change Biology 7(1): 1–13.

    Google Scholar 

  • Yamori, W., K. Hikosaka & D. A. Way, 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research 119(1): 101–117.

    CAS  PubMed  Google Scholar 

  • Zheng, Y.-L., Y.-L. Feng, W.-X. Liu & Z.-Y. Liao, 2009. Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology 203(2): 263–271.

    Google Scholar 

Download references

Acknowledgements

This study was jointly funded by the National Key R&D Program of China (Grant No. 2016YFE0109600), Ministry of Land and Resources program: “Special foundation for scientific research on public causes” (Grant No. 201111023), National Natural Science Foundation of China (Grant Nos. 41240022, 40872167, 31970347 and 31770361), and China Geological Survey (Grant Nos. DD20189503 and GZH201200503). E. Jespersen was supported by the Sino-Danish Center for Education and Research (SDC). F. Eller was funded by a grant from the Carlsberg Foundation (Grant No. CF15-0330). This manuscript benefitted greatly from the constructive comments of editor and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Franziska Eller, Hans Brix, Brian K. Sorrell & Carlos A. Arias / Wetland ecosystems: functions and use in a changing climate

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Jespersen, E., Ye, S. et al. Intraspecific differences of Asian/Australian Phragmites australis subgroups reveal no potentially invasive traits. Hydrobiologia 848, 3331–3351 (2021). https://doi.org/10.1007/s10750-020-04474-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04474-w

Keywords

Navigation