Skip to main content

Advertisement

Log in

Geographical and temporal patterns of cyanobacterial assemblages in the Danube Delta lake complexes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Danube Delta shallow lakes experience cyanobacteria blooms that can negatively affect the aquatic ecosystem. Although there are several studies on Danube Delta cyanobacteria, little is known about their spatial–temporal patterns and the potential predictive role they can offer. We therefore analyzed the distribution of cyanobacteria in 19 lakes belonging to three lake complexes and tested whether their seasonal dynamics are in line with the predictions of the PEG model. Furthermore, we investigated to which extent cyanobacteria diversity and abundance were related to lake hydrogeomorphological characteristics such as surface, water level, connectivity, water retention, flood risk, and transparency. Although lakes had different seasonal cyanobacterial assemblages, the biovolume and genus richness had a geographical pattern, decreasing from south-east (lakes forming the fluvial delta) towards north-west (lakes forming the maritime delta). Cyanobacteria biovolume reflected largely the PEG model peaking in summer (the fluvial delta) and autumn (the maritime delta). Genus richness followed the same pattern. Cyanobacteria distribution was predicted by various abiotic (e.g., risk of flooding, connectivity) and biotic factors (e.g., submersed macrophytes, phytoplankton diversity, peat deposits). Our study contributes to the understanding of cyanobacteria diversity and distribution in shallow interconnected lakes by revealing the complexity of predictors for geographical and seasonal patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antilla, K., D. J. Barrington, H. Borges, L. X. Coggins, J. C. Comiso, D. R. Dietrich, B. Espina, J. Espinosa, H. Farrell & M. Fraga, 2015. Climate Change and Marine and Freshwater Toxins. Walter de Gruyter GmbH & Co KG, Berlin.

    Google Scholar 

  • Armaş, I. & E. Avram, 2009. Perception of flood risk in Danube Delta, Romania. Natural Hazards 50: 269–287.

    Article  Google Scholar 

  • Bellinger, E. G. & D. C. Sigee, 2010. Introduction to freshwater algae. Freshwater Algae: Identification and Use as Bioindicators: 1–40.

  • Bondar, C. & N. Panin, 2001. The Danube Delta hydrologic database and modelling. GeoEcoMarina 5: 5–52.

    Google Scholar 

  • Botnariuc, N. & A. Vădineanu, 1982. Ecologie. Editura Didactică şi Pedagogică.

  • Cărăuş, I. & N. Nicolescu, 2006. Phytoplakton and its primary production in the Danube Delta In: Danube Delta. Genesis and Biodiversity. Backhuys Publishers, Leiden, The Netherlands.

  • Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman & D. A. Wardle, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59.

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia, A., 2015. Cyanobacterial Biodiversity and Associated Ecosystem Services: Introduction to the Special Issue. Springer, Berlin.

    Google Scholar 

  • Coops, H., J. Hanganu, M. Tudor & W. Oosterberg, 1999. Classification of Danube Delta Lakes Based on Aquatic Vegetation and Turbidity Biology, Ecology and Management of Aquatic Plants. Springer, Berlin: 187–191.

    Book  Google Scholar 

  • Coops, H., L. L. Buijse, A. D. T. Buijse, A. Constantinescu, S. Covaliov, J. Hanganu, B. W. Ibelings, G. Menting, I. Navodaru & W. Oosterberg, 2008. Trophic gradients in a large-river Delta: ecological structure determined by connectivity gradients in the Danube Delta (Romania). River Research and Applications 24: 698–709.

    Article  Google Scholar 

  • De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. Huszar, B. W. Ibelings, E. Jeppesen, S. Kosten, W. M. Mooij, F. Roland & U. Sommer, 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biology 58: 463–482.

    Article  Google Scholar 

  • Díez, B. & K. Ininbergs, 2014. Ecological importance of cyanobacteria. In Sharma, N. K., A. K. Rai & L. J. Stal (eds), Cyanobacteria, Vol. 106. John Wiley & Sons Ltd, Chichester.

    Google Scholar 

  • Dumitrache, A., M. Moldoveanu, L. Florescu, L. Parpală & C. Sandu, 2014. A spatial approach of the environmental factors controlling plankton communities in the Danube Delta. Muzeul Olteniei Craiova Oltenia Studii şi comunicări Ştiinţele Naturii 30: 197–204.

    Google Scholar 

  • Enache, I., L. I. Florescu, M. Moldoveanu, M. I. Moza, L. Parpală, C. Sandu, P. Turko, G. Rîşnoveanu & P. Spaak, 2019. Diversity and distribution of Daphnia across space and time in Danube Delta lakes explained by food quality and abundance. Hydrobiologia 842: 39–54.

    Article  CAS  Google Scholar 

  • Erwin, K. L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17: 71.

    Article  Google Scholar 

  • Florescu, M. H., M. M. Maxim, L. Momeu, M. Cîmpean & K. P. Battes, 2015. Wetlands algal communities from Balta Mică a Brăilei Nature Park (Romania). Transylvanian Review of Systematical & Ecological Research 17: 23–44.

    Article  Google Scholar 

  • Fontana, S., M. K. Thomas, M. Moldoveanu, P. Spaak & F. Pomati, 2018. Individual-level trait diversity predicts phytoplankton community properties better than species richness or evenness. The ISME Journal 12: 356–366.

    Article  PubMed  Google Scholar 

  • Friedrich, J., C. Dinkel, E. Grieder, S. Radan, D. Secrieru, S. Steingruber & B. Wehrli, 2003. Nutrient uptake and benthic regeneration in Danube Delta Lakes. Biogeochemistry 64: 373–398.

    Article  CAS  Google Scholar 

  • Găldean, N. & D. M. Ruști, 2006. The Danube Delta ecosystems. In Tudorancea, C. & M. M. Tudorancea (eds), Danube Delta – Genesis and Biodiversity. Blackhuys Publishers, Leiden: 95–104.

    Google Scholar 

  • Gâștescu, P. & R. Știucă, 2008. Delta Dunarii Rezervatie a Biosferei. Editura CD-press, Bucuresti.

    Google Scholar 

  • Gâstescu, P., M. Oltean, I. Nichersu & A. Constantinescu, 1999. Ecosystems of the Romanian Danube Delta biosphere reserve. RIZA Werkdocument 99: 16–30.

    Google Scholar 

  • Giosan, L., 2014. Protect the world’s deltas. Nature 516: 31.

    Article  CAS  PubMed  Google Scholar 

  • Guerold, F., 2000. Influence of taxonomic determination level on several community indices. Water Research 34: 487–492.

    Article  CAS  Google Scholar 

  • Güttler, F. N., S. Niculescu & F. Gohin, 2013. Turbidity retrieval and monitoring of Danube Delta waters using multi-sensor optical remote sensing data: an integrated view from the delta plain lakes to the western–northwestern Black Sea coastal zone. Remote Sensing of Environment 132: 86–101.

    Article  Google Scholar 

  • Havens, K. E., 2008. Cyanobacteria Blooms: Effects on Aquatic Ecosystems Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer, Berlin: 733–747.

    Book  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Huber-Pestalozzi, G., 1938. Das Phytoplankton des Süßwassers. Systematik und Biologie. 1. Teil: Blaualgen, Bakterien, Pilze. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart: 342.

    Google Scholar 

  • Ibellings, B., 1992. Cyanobacterial waterblooms: the role of buoyancy in water columns of varying stability. Ph D thesis Laboratory of Microbiology, University of Amsterdam: 1–171.

  • Iordachi, C. & K. Van Assche, 2014. The Bio-Politics of the Danube Delta: Nature, History, Policies. Lexington Books, Lexington.

    Google Scholar 

  • Irimuş, I. A., 2006. The hydrological regime of the Danube River in the deltaic sector. In Tudorancea, C. & M. M. Tudorancea (eds), Danube Delta – Genesis and Biodiversity. Blackhuys Publishers, Leiden: 53–64.

    Google Scholar 

  • Jamil, A., K. Lajtha, S. Radan, G. Ruzsa, S. Cristofor & C. Postolache, 1999. Mussels as bioindicators of trace metal pollution in the Danube Delta of Romania. Hydrobiologia 392: 143–158.

    Article  CAS  Google Scholar 

  • Kallis, G. & D. Butler, 2001. The EU water framework directive: measures and implications. Water Policy 3: 125–142.

    Article  Google Scholar 

  • Kauppila, P., G. Hällfors, P. Kangas, P. Kokkonen & S. Basova, 1995. Late summer phytoplankton species composition and biomasses in the eastern Gulf of Finland. Ophelia 42: 179–191.

    Article  Google Scholar 

  • Kleinteich, J., S. A. Wood, F. C. Küpper, A. Camacho, A. Quesada, T. Frickey & D. R. Dietrich, 2012. Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nature Climate Change 2: 356.

    Article  CAS  Google Scholar 

  • Komárek, J., 1998. Anagnostidis K. Cyanoprokaryota 1 Teil: Chroococcales Susswasserflora von Mitteleuropa Band 19 1.

  • Komárek, J. & K. C. Anagnostidis, 2005. Teil: Oscillatoriales. Subwasserflora von Mitteleuropa. Bridel B, Gaster G, Krienitz L, Schargerl M.(Hrs.)(19/2). Elsevier, Amsterdam.

    Google Scholar 

  • Komárek, J., K. Anagnostidis & I. Cyanoprokaryota, 1998. Teil Chroococcales. Band 19/1, Süßwasserflora von Mitteleuropa. Gaustav Fischer Verlag, Jena.

    Google Scholar 

  • Komárek, J., J. Kaštovský, J. Mareš & J. Johansen, 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–333.

    Google Scholar 

  • Lauridsen, T. L., E. Jeppesen, S. A. Declerck, L. De Meester, J. M. Conde-Porcuna, W. Rommens & S. Brucet, 2015. The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: differences between northern and southern Europe. Hydrobiologia 744: 49–61.

    Article  CAS  Google Scholar 

  • Mateo, P., F. Leganés, E. Perona, V. Loza & F. Fernández-Piñas, 2015. Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodiversity and Conservation 24: 909–948.

    Article  Google Scholar 

  • Moldoveanu, M. & L. Florescu, 2013. Long - term analysis of cyanobacterial blooms in lake Roșu (Danube Delta). Muzeul Olteniei Craiova Oltenia Studii şi comunicări Ştiinţele Naturii 29: 244–251.

    Google Scholar 

  • Moldoveanu, M., V. Zinevici, L. Parpală, D. Ionică, I. Păceșilă, A. Dumitrache, C. Sandu & L. Florescu, 2015. The role of plankton communities in the functional capacity of the Danube Delta ecosystems - a long term study. Muzeul Olteniei Craiova Muzeul Olteniei Craiova Studii şi comunicări - Ştiinţele Naturii 31: 183–188.

    Google Scholar 

  • Năstase, A., 2009. Cercetări asupra biodiversităţii ihtiofaunei din Delta Dunării pentru exploatarea durabilă a resurselor piscicole. Universitatea “Dunărea de Jos” Galaţi.

  • Năstase, A. & I. Năvodaru, 2008. Ichthyofauna of Danube delta lakes. Scientific Annals of DDI 14: 37–46.

    Google Scholar 

  • Nicolescu, N., 1992. The phytoplankton biodiversity in some lacustrian ecosystems from the Danube Delta in 1991. Analele Ştiințifice ale Institutului Delta Dunării.

  • Oosterberg, W., M. Staras, L. Bogdan, A. Buijse, A. Constantinescu, H. Coops, J. Hanganu, B. W. Ibelings, G. Menting & I. Navodaru, 2000. Ecological Gradients in the Danube Delta Lakes: Present State and Man-Induced Changes. Institute for Inland Water Management and Waste Water Treatment RIZA, Lelystad: 170.

    Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Climate – Blooms like it hot. Science 320: 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Pantea, I., 1993. The study of optical phenomena records with different receivers in the aquatic ecosystems from Danube elta. Analele Ştiințifice ale Institutului Delta Dunării: 321.

  • Passy, S. I. & P. Legendre, 2006. Are algal communities driven toward maximum biomass? Proceedings of the Royal Society B: Biological Sciences 273: 2667–2674.

    Article  PubMed  PubMed Central  Google Scholar 

  • Penning, W. E., B. Dudley, M. Mjelde, S. Hellsten, J. Hanganu, A. Kolada, M. van den Berg, S. Poikane, G. Phillips & N. Willby, 2008. Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquatic Ecology 42: 253–264.

    Article  CAS  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy & D. Sarkar, 2018. R Core Team (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1-131.1. R software.

  • Postolache, C., 2003. Nutrient Management in the Danube Basin and its impact on the Black Sea. Scientific Report for the EVK1-2000-0603 Project.

  • Postolache, C., 2006. The chemistry of the Danube Delta. In Tudorancea, C. & M. M. Tudorancea (eds), Danube Delta – Genesis and Biodiversity. Blackhuys Publishers, Leiden: 65–95.

    Google Scholar 

  • Postolache, C., G. Rîşnoveanu & A. Vădineanu, 2006. Nitrogen and Phosphorous Excretion Rates by Tubificids from the Prahova River (Romania). Hydrobiologia 553: 121–127.

    Article  CAS  Google Scholar 

  • * R Core Development Team 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/.

  • Radu, E., M. D. Cirstea, C. Curuţiu & L. Măruţescu, 2017. Environmental parameters influencing the development of bacterioplankton communities from Danube Delta lakes. Romanian Biotechnological Letters 22: 12661.

    CAS  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Romanescu, G., 1999. The Danube delta-some hydromorphodynamic aspects: deltaic changes during the modern and contemporary historical stages. Editura Universităţii din Suceava.

  • Romanescu, G., 2005. Morpho-hydrographical evolution of the Danube Delta. Editura Pim.

  • Russi, D., P. ten Brink, A. Farmer, T. Badura, D. Coates, J. Förster, R. Kumar & N. Davidson, 2013. The Economics of Ecosystems and Biodiversity for Water and Wetlands. IEEP, London.

    Google Scholar 

  • Sayer, C., N. Roberts, J. Sadler, C. David & P. Wade, 1999. Biodiversity changes in a shallow lake ecosystem: a multi-proxy palaeolimnological analysis. Journal of Biogeography 26: 97–114.

    Article  Google Scholar 

  • Schmitz, A. & R. Nagel, 1995. Influence of 3, 4-dichloroaniline (3, 4-DCA) on benthic invertebrates in indoor experimental streams. Ecotoxicology and Environmental Safety 30: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Šmilauer, P. & J. Lepš, 2014. Multivariate Analysis of Ecological Data Using CANOCO 5. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106: 433–471.

    Google Scholar 

  • Stancu-Stoianovici, E., 1992. Numeric and gravimetric aspects of phytoplankton communities in the areas of lenitic-terrestrial ecotone in the Danube Delta under the ecological conditions of the year 1991. Analele Științifice ale Institutului Delta Dunării.

  • Stoch, F., M. Korn, S. Turki, L. Naselli-Flores & F. Marrone, 2016. The role of spatial environmental factors as determinants of large branchiopod distribution in Tunisian temporary ponds. Hydrobiologia 782: 37–51.

    Article  Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Ter Braak, C. & P. Šmilauer, 2012. Canoco reference manual and user’s guide: software for ordination (version 50) microcomputer power. Ithaca, NY, USA: 496.

  • Török, L., 2000–2001. Data on the Influence of Algae in Submerged Macrophytes. Tulcea: Scientific Annals of the Danube Delta Institute for Research and Development: 165–170.

  • Török, L., 2005a. Ecological Status of the Danube Delta Biosphere Reserve’s Lakes. Scientific Annals of the Danube Delta Institute for Research and Development, Tulcea: 112–115.

    Google Scholar 

  • Török, L., 2005b. How the Algal Bloom is Defined and Quantified in Europe Today?. Scientific Annals of the Danube Delta Institute, Tulcea: 4.

    Google Scholar 

  • Török, L., 2005c. Seasonal succesion of phytoplankton from lakes of the Danube Delta. Acta Oecologica XII: 15–23.

    Google Scholar 

  • Török, L., 2007. The dynamics of the phytoplankton in some lakes of the Danube Delta Biosphere Reserve Brukenthal. Acta Musei II: 45–48.

    Google Scholar 

  • Török, L., 2008a. Phytoplankton blooms of the Danube Delta Biosphere Reserve. Contributii Botanice 43: 85–90.

    Google Scholar 

  • Török, L., 2008b. Phytoplankton blooms of the Danube Delta Biosphere Reserve. Contribuţii Botanice, Grădina Botanică “Alexandru Borza”, Cluj-Napoca XLIII: 85–90.

    Google Scholar 

  • Török, L., 2009a. A New Approach to Assess the Phytoplankton Biomass in Danube Delta Biosphere Reserve, Vol. 15. Scientific Annals of the Danube Delta Institute, Tulcea: 6.

    Google Scholar 

  • Török, L., 2009b. Preliminary Data on Phytoplankton Diurnal Development in the Danube Delta, Vol. 15. Scientific Annals of the Danube Delta Institute, Tulcea: 6.

    Google Scholar 

  • Török, L., 2011. The Trend of Phytoplankton Development in Danube Delta’s Lakes, Vol. 17. Scientific Annals of the Danube Delta Institute, Tulcea: 89–98.

    Google Scholar 

  • Török, L., L. Teodorof & C. Năstase, 2008. The Assessment of the Nutrient Pollution in Danube Delta Biosphere Reserve’s Surface Water and Proposal for Risk Evaluation of Failing the Environmental Quality Objective, Vol. 14. Scientific Annals of the Danube Delta Institute, Tulcea: 99–104.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vădineanu, A., S. Cristofor & G. Ignat, 1992. Phytoplankton and submerged macrophytes in the aquatic ecosystems of the Danube Delta during the last decade. Hydrobiologia 243(244): 141–146.

    Article  Google Scholar 

  • Vădineanu, A., S. Cristofor, G. Ignat, C. Ciubuc, G. Rîşnoveanu, F. Bodescu & N. Botnariuc, 2001. Structural and functional changes within the benthic communities of Danube Delta lakes. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 27: 2571–2576.

    Google Scholar 

  • Vespremeanu-Stroe, A., L. Preoteasa, F. Zăinescu & F. Tătui, 2017. The Evolution of Danube Delta After Black Sea Reconnection to World Ocean Landform Dynamics and Evolution in Romania. Springer, Berlin: 521–549.

    Google Scholar 

  • Watson, R. R., 2014. Polyphenols in plants: isolation, purification and extract preparation. Academic Press.

  • Xiao, L.-J., T. Wang, R. Hu, B.-P. Han, S. Wang, X. Qian & J. Padisák, 2011. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Research 45: 5099–5109.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., S. Nakai, M. Hosomi, Y. Sezaki & T. Masateru, 2004. Inhibition of Cyanobacterial Growth by Allelopathy of Reed. Japanese Journal of Water Treatment Biology 40:23–28.

Download references

Acknowledgements

This work was supported by the Swiss Enlargement Contribution, project IZERZ0 142165, “CyanoArchive”, in the framework of the Romanian-Swiss Research Programme. The authors express their thanks to (chronologically): Cristina Sandu for making this project possible, Francesco Pomati for all the help and supervising, Ioana Enache, Doru Simon Dobre, Aurel Damian, Vanea Dunaev, Laura Parpală, Emilia Radu, Ciprian Bîrsan and Laurențiu Butâlchin, the technicians Stela Sofa, Esther Keller and Regula Illi, and Christoph Tellenbach for the taxonomy update. Many thanks to Liliana Torök, Geta Rîşnoveanu, and Angela Curtean-Bănăduc for their useful comments and observations, Larisa Florescu, and Darmina Niță for answering the questions related to this subject, Iulia Nichersu and Ioan Păceșilă for providing the values of the lake surfaces, Flo Botez for the partial text correction, and Eugenia Cioacă for all the help in providing references. All our gratitude goes to Ioan Sîrbu for his assistance with the statistics, essential guidance, and constant support and to Daniel Roelke, Adrian Florea, and Janne Soininen for all the useful suggestions after reviewing the manuscript. Special thanks go to Laura Kuhlmann for the language editing and to the Editor and two anonymous Reviewers for their comments that substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Iasmina Moza or Ana Maria Benedek.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interests

Additional information

Handling editor: Luigi Naselli-Flores

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moza, M.I., Postolache, C., Benedek, A.M. et al. Geographical and temporal patterns of cyanobacterial assemblages in the Danube Delta lake complexes. Hydrobiologia 848, 753–771 (2021). https://doi.org/10.1007/s10750-020-04466-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04466-w

Keywords

Navigation