Skip to main content
Log in

Self-Supported Phosphorus-Doped Vertically Aligned Graphene Arrays Integrated with FeCoNiP Nanoparticles as Bifunctional Electrocatalysts for Water-Splitting Over a Wide pH Range

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Self-supported non-noble metal based bifunctional electrocatalysts with high catalytic activity and long-term stability in a wide pH range are highly essential for the production of hydrogen and oxygen, remains a great challenge. Herein, a bifunctional electrocatalyst is synthesized via electroless plating of FeCoNiP nanoparticles on self-supported phosphorus-doped vertically aligned graphene arrays (FeCoNiP/P-VG). FeCoNiP/P-VG exhibits an exceptionally high catalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in a wide pH range, with an overpotential of 81 and 141 mV for HER, and 240 and 409 mV for OER, in 1.0 M KOH and 0.5 M H2SO4 respectively, at current density of 10 mA. It also performs quite low Tafel slope value of 40 mV·dec−1 for HER and 69 mV·dec−1 for OER in 1.0 M KOH. More importantly, it shows prominent stability in acidic and alkaline electrolytes. This study may open a new avenue for the design and fabrication of self-supported bifunctional electrocatalysts for water splitting.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, H.J., Li, X.P., Hähnel, A., Naumann, V., Lin, C., Azimi, S., Schweizer, S.L., Maijenburg, A.W., Wehrspohn, R.B.: Nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 28, 1706847 (2018)

    Article  Google Scholar 

  2. Zhang, J.J., Lv, L.B., Zhao, T.J., Lin, Y.X., Yu, Q.Y., Su, J., Li, X.H., Chen, J.S.: Engineering the interfaces of super-absorbing graphene-based electrodes with gas and electrolyte to boost gas evolution/activation reactions. Chemsuschem 11, 2306–2309 (2018)

    Article  CAS  Google Scholar 

  3. Anantharaj, S., Karthik, P.E., Subramanian, B., Kundu, S.: Pt nanoparticle anchored molecular self-assemblies of DNA: an extremely stable and efficient HER electrocatalyst with ultralow Pt content. ACS Catal. 6, 4660–4672 (2016)

    Article  CAS  Google Scholar 

  4. Seh, Z.W., Kibsgaard, J., Dickens, C.F., Chorkendorff, I., Nørskov, J.K., Jaramillo, T.F.: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017)

    Article  Google Scholar 

  5. Huynh, M., Ozel, T., Liu, C., Lau, E.C., Nocera, D.G.: Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid. Chem. Sci. 8, 4779–4794 (2017)

    Article  CAS  Google Scholar 

  6. Jiang, P., Liu, Q., Liang, Y.H., Tian, J.Q., Asiri, A.M., Sun, X.P.: A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. 53, 12855–12859 (2014a)

    Article  CAS  Google Scholar 

  7. Feng, L.G., Vrubel, H., Bensimon, M., Hu, X.L.: Phys, Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Phys. Chem. Chem. Phys. 16, 5917–5921 (2014)

    Article  CAS  Google Scholar 

  8. Tian, J.Q., Liu, Q., Asiri, A.M., Sun, X.P.: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136, 7587–7590 (2014a)

    Article  CAS  Google Scholar 

  9. Li, R.Q., Wang, B.L., Gao, T., Zhang, R., Xu, C.Y., Jiang, X.F., Zeng, J.J., Bando, Y., Hu, P.F., Li, Y.L., Wang, X.B.: Monolithic electrode integrated of ultrathin NiFeP on 3D strutted graphene for bifunctionally efficient overall water splitting. Nona Energy 58, 870–876 (2019)

    Article  CAS  Google Scholar 

  10. Liu, P., Rodriguez, J.A.: Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127, 14871–14878 (2005)

    Article  CAS  Google Scholar 

  11. Stern, L.A., Feng, L., Song, F., Hu, X.L.: Ni2P as a janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8, 2347–2351 (2015)

    Article  CAS  Google Scholar 

  12. Tan, Y.W., Wang, H., Liu, P., Shen, Y.H., Cheng, C., Hirata, A., Fujita, T., Tang, Z., Chen, M.W.: Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 9, 2257–2261 (2016)

    Article  CAS  Google Scholar 

  13. Yu, J., Li, Q.Q.Y., Xu, C.Y., Zhen, L., David, V.P., Wu, J.S.: Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Adv. Funct. Mater. 26, 7644–7651 (2016)

    Article  CAS  Google Scholar 

  14. Yan, G., Tan, H.Q., Wang, Y.H., Li, Y.G.: Amorphous quaternary alloy phosphide hierarchical nanoarrays with pagoda-like structure grown on Ni foam as pH-universal electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 489, 519–527 (2019)

    Article  CAS  Google Scholar 

  15. Xu, J.Y., Li, J.J., Xiong, D.H., Zhang, B.S., Liu, Y.F., Wu, K., Amorim, I., Li, W., Liu, L.F.: Trends in activity for the oxygen evolution reaction on transition metal (M = Fe Co, Ni) phosphide pre-catalysts. Chem. Sci. 9, 3470–3476 (2018)

    Article  CAS  Google Scholar 

  16. Cao, X.Y., Cui, L., Wang, X.X., Yang, W.R., Liu, J.Q.: Nickel-borate/reduced graphene oxide nanohybrid: a robust and efficient electrocatalyst for oxygen evolution reaction in alkaline and near neutral media. ChemCatChem. 10, 2826–2832 (2018)

    Article  CAS  Google Scholar 

  17. Nsanzimana, J.M.V., Dangol, R., Reddu, V., Duo, S., Peng, Y.C., Dinh, K.N., Huang, Z.F., Yan, Q.Y., Wang, X.: Facile synthesis of amorphous ternary metal borides-reduced graphene oxide hybrid with superior oxygen evolution activity. ACS Appl. Mater. Interfaces 11, 846–855 (2019)

    Article  CAS  Google Scholar 

  18. Huang, H., Wang, X.: Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J. Mater. Chem. A 2, 6266–6291 (2014)

    Article  CAS  Google Scholar 

  19. Qiu, H.J., Guan, Y.X., Luo, P., Wang, Y.: Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron. 89, 85–95 (2017)

    Article  CAS  Google Scholar 

  20. Hong, J., Char, K., Kim, B.S.: Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle. J. Phys. Chem. Lett. 24, 3442–3445 (2010)

    Article  Google Scholar 

  21. Ahn, H.S., Kim, J.M., Park, C., Jang, J.W., Lee, J.S., Kim, H., Kaviany, M., Kim, M.H.: A novel role of three dimensional graphene foam to prevent heater failure during boiling. Sci Rep. 3, 1960 (2013)

    Article  Google Scholar 

  22. Zhang, P.P., Li, J., Lv, L.X., Zhao, Y., Qiu, L.T.: Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017)

    Article  CAS  Google Scholar 

  23. Gadipelli, S., Guo, Z.X.: Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015)

    Article  CAS  Google Scholar 

  24. Sadeghinezhad, E., Mehrali, M., Saidur, R., Mehrali, M., Latibari, S.T., Akhiani, A.R., Metselaar, H.S.C.: A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Convers. Manage. 111, 466–487 (2016)

    Article  CAS  Google Scholar 

  25. An, M., Du, C.Y., Du, L., Sun, Y.G., Wang, Y.J., Chen, C., Han, G.K., Yin, G.P., Gao, Y.Z.: Phosphorus-doped graphene support to enhance electrocatalysis of methanol oxidation reaction on platinum nanoparticles. Chem. Phys. Lett. 687, 1–8 (2017)

    Article  CAS  Google Scholar 

  26. Peng, Z., Yu, Y., Jiang, D., Wu, Y., Xia, B.Y., Dong, Z.: N-doped carbon shell coated CoP nanocrystals encapsulated in porous N-doped carbon substrate as efficient electrocatalyst of water splitting. Carbon 144, 464–471 (2019)

    Article  CAS  Google Scholar 

  27. He, P.L., Yu, X.Y., Lou, X.W.: Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem. Int. Edit. 56, 3897–3900 (2017)

    Article  CAS  Google Scholar 

  28. Li, Z.S., Zhang, L., Huang, X.M., Ye, L.T.: ShenLin, shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation. Electrochim. Acta 121, 215–222 (2015)

    Article  Google Scholar 

  29. Hummers, W.S., Offeman, R.E., Am, J.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  30. Sumi, V.S., Ameen Sha, M., Arunima, S.R., Shibli, S.M.A.: Development of a novel method of NiCoP alloy coating for electrocatalytic hydrogen evolution reaction in alkaline media. Electrochim. Acta 303, 67–77 (2019)

    Article  CAS  Google Scholar 

  31. Mendoza-Garcia, A., Zhu, H.Y., Yu, Y.S., Li, Q., Zhou, L., Su, D., Kramer, M.J., Sun, S.H.: Controlled anisotropic growth of Co-Fe-P from Co-Fe-O nanoparticles. Angew. Chem. Int. Ed. 54, 9642–9645 (2015)

    Article  CAS  Google Scholar 

  32. Zhang, G.W., Wang, B., Bi, J.L., Fang, D.Q., Yang, S.C.: Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A. 10, 5769–5778 (2019)

    Article  Google Scholar 

  33. Cao, L.M., Hu, Y.W., Tang, S.F., Iijin, A., Wang, J.W., Zhang, Z.M., Lu, T.B.: Fe-CoP electrocatalyst derived from a bimetallic Prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 5, 1800949 (2018)

    Article  Google Scholar 

  34. Wu, A.P., Xie, Y., Ma, H., Tian, C.G., Gu, Y., Yan, H.J., Zhang, X.M., Yang, G.Y., Fu, H.G.: Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 44, 353–363 (2018)

    Article  CAS  Google Scholar 

  35. Wang, X.S., Xu, C.C., Jaroniec, M., Zheng, Y., Qiao, S.Z.: Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 4876 (2019)

    Article  Google Scholar 

  36. Li, P.P., Zhao, R.B., Chen, H.Y., Wang, H.B., Wei, P.P., Huang, H., Liu, Q., Li, T.S., Shi, X.F., Zhang, Y.Y., Liu, M.L., Sun, X.P.: Recent advances in the development of water oxidation electrocatalysts at mild pH. Small 15(13), 1805103 (2019)

    Article  Google Scholar 

  37. Li, D., Baydoun, H., Verani, C.N., Brock, S.L.: Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006–4009 (2016)

    Article  CAS  Google Scholar 

  38. McCrory, C.C.L., Jung, S.H., Ferrer, I.M., Chatman, S.M., Peters, J.C., Jaramillo, T.F.: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water Splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015)

    Article  CAS  Google Scholar 

  39. Duan, J.J., Chen, S., Jaroniec, M., Qiao, S.Z.: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5, 5207–5234 (2015)

    Article  CAS  Google Scholar 

  40. Cecilia, J.A., Infantes-Molina, A., Rodr´ıguez-Castell´on, E., Jim´enez-L´opez, A.: A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene. J. Catal. 263, 4–15 (2009)

    Article  CAS  Google Scholar 

  41. Chung, D.Y., Jun, S.W., Yoon, G., Kim, H., Yoo, J.M., Lee, K.S., Kim, T., Shin, H., Sinha, A.K., Kwon, S.G., Kang, K., Hyeon, T., Sung, Y.E., Am, J.: Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 139, 6669–6674 (2017)

    Article  CAS  Google Scholar 

  42. Hao, S., Yang, L.B., Liu, D.N., Kong, R.M., Du, G., Asiri, A.M., Yang, Y.C., Sun, X.P.: Integrating natural biomass electro-oxidation and hydrogen evolution: using a porous Fe-doped CoP nanosheet array as a bifunctional catalyst. Chem. Commun. 53, 5710–5713 (2017)

    Article  CAS  Google Scholar 

  43. Tia, X.Q., Li, Y.H., Xia, D., Sun, J.: Ultrafast and large scale preparation of superior catalyst for oxygen evolution reaction. J. Power Sources. 365, 320–326 (2017)

    Article  Google Scholar 

  44. Du, C., Yang, L., Yang, F.L., Cheng, G.Z., Luo, W.: Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 7, 4131–4137 (2017)

    Article  CAS  Google Scholar 

  45. Hu, F., Zhu, S.L., Chen, S.M., Li, Y., Ma, L., Wu, T.P., Zhang, Y., Wang, C.M., Liu, C.C., Yang, X.J., Song, L., Yang, X.W., Xiong, Y.J.: Amorphous metallic NiFeP: a conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 29, 1606570 (2017)

    Article  Google Scholar 

  46. Zhang, T., Du, J., Xi, P.X., Xu, C.L.: Hybrids of cobalt/iron phosphides derived from bimetal-organic frameworks as highly efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Mater. Interfaces 9, 362–370 (2017)

    Article  CAS  Google Scholar 

  47. Liang, H.F., Gandi, A.N., Anjum, D.H., Wang, X.B., Schwingenschlögl, U., Alshareef, H.N.: Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 16, 7718–7725 (2016)

    Article  CAS  Google Scholar 

  48. Hao, J.H., Yang, W.S., Zhang, Z., Tang, J.L.: Metal-organic frameworks derived CoxFe1-xP nanocubes for electrochemical hydrogen evolution. Nanoscale. 7, 11055–11062 (2015)

    Article  CAS  Google Scholar 

  49. Han, A.L., Jin, S., Chen, H.L., Ji, H.X., Sun, Z.J., Du, P.G.: A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14. J. Mater. Chem. A. 3, 1941–1946 (2015)

    Article  CAS  Google Scholar 

  50. Yan, L.T., Jiang, H.M., Xing, Y.L., Wang, Y., Liu, D., Gu, X., Dai, P.C., Li, L.J., Zhao, X.B.: J, nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. J. Mater. Chem. A. 6, 1682–1691 (2018)

    Article  CAS  Google Scholar 

  51. Zheng, Y., Jiao, Y., Li, L.H., Xing, T., Chen, Y., Jaroniec, M., Qiao, S.Z.: Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8, 5290–5296 (2014)

    Article  CAS  Google Scholar 

  52. Tian, J.Q., Liu, Q., Asiri, A.M., Sun, X.P.: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient. J. Am. Chem. Soc. 136, 7587–7590 (2014b)

    Article  CAS  Google Scholar 

  53. You, B., Jiang, N., Sheng, M.L., Gul, S., Yano, J., Sun, Y.J.: High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chem. Mater. 27, 7636–7642 (2015)

    Article  CAS  Google Scholar 

  54. He, S.Q., He, S.Y., Gao, F., Bo, X., Wang, Q.X., Chen, X.J., Duan, J.J., Zhao, C.: Ni2P@carbon core-shell nanorod array derived from ZIF-67-Ni: effect of phosphorization temperature on morphology, structure and hydrogen evolution reaction performance. Appl. Surf. Sci. 457, 933–941 (2018)

    Article  CAS  Google Scholar 

  55. Pan, Y., Liu, Y., Zhao, J.C., Yang, K., Liang, J.L., Liu, D.D., Hu, W.H., Liu, D.P., Liu, Y.Q., Liu, C.G.: Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A. 3, 1656–1665 (2015)

    Article  CAS  Google Scholar 

  56. He, S.Q., He, S.Y., Bo, X., Wang, Q.X., Zhan, F.P., Wang, Q.H., Zhao, C.: Porous Ni2P/C microrods derived from microwave-prepared MOF-74-Ni and its electrocatalysis for hydrogen evolution reaction. Mater. Lett. 231, 94–97 (2018)

    Article  CAS  Google Scholar 

  57. Ma, L.B., Shen, X.P., Zhou, H., Zhu, G.X., Ji, G.Y., Chen, K.M.: CoP nanoparticles deposited on reduced graphene oxide sheets as an active electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3, 5337–5343 (2015)

    Article  CAS  Google Scholar 

  58. Xiao, X.F., He, C.T., Zhao, S.L., Li, J., Lin, W.S., Yuan, Z.K., Zhang, Q., Wang, S.Y., Dai, L.M., Yu, D.S.: A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 10, 893–889 (2017)

    Article  CAS  Google Scholar 

  59. Zhang, Z., Hao, J.H., Yang, W.S., Tang, J.L.: Iron triad (Fe Co, Ni) trinary phosphide nanosheet arrays as high-performance bifunctional electrodes for full water splitting in basic and neutral conditions. RSC Adv. 6, 9647–9655 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21902127).

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21902127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Availability of data and material

All the datas and materials are able to be obtained from corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Shaik, F., Liang, K. et al. Self-Supported Phosphorus-Doped Vertically Aligned Graphene Arrays Integrated with FeCoNiP Nanoparticles as Bifunctional Electrocatalysts for Water-Splitting Over a Wide pH Range. Electron. Mater. Lett. 17, 87–101 (2021). https://doi.org/10.1007/s13391-020-00260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00260-x

Keywords

Navigation