Skip to main content
Log in

On the Lattice Hadwiger Number of Superballs and Some Other Bodies

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We show that the lattice Hadwiger (= kissing) number of superballs is exponential in the dimension. The same methods can be used to show exponential growth for more general convex bodies as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashikhmin, A., Barg, A., Vlăduţ, S.: Linear codes with exponentially many light vectors. J. Comb. Theory Ser. A 96(2), 396–399 (2001)

    Article  MathSciNet  Google Scholar 

  2. Barnes, E.S., Sloane, N.J.A.: New lattice packings of spheres. Can. J. Math. 35(1), 117–130 (1983)

    Article  MathSciNet  Google Scholar 

  3. Bos, A., Conway, J.H., Sloane, N.J.A.: Further lattice packings in high dimensions. Mathematika 29(2), 171–180 (1982)

    Article  MathSciNet  Google Scholar 

  4. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften, vol. 290. Springer, New York (1988)

  5. Elkies, N.D., Odlyzko, A.M., Rush, J.A.: On the packing densities of superballs and other bodies. Invent. Math. 105(3), 613–639 (1991)

    Article  MathSciNet  Google Scholar 

  6. Garcia, A., Stichtenoth, H.: A tower of Artin–Schreier extensions of function fields attaining the Drinfeld–Vladut bound. Invent. Math. 121(1), 211–222 (1995)

    Article  MathSciNet  Google Scholar 

  7. Leech, J.: Some sphere packings in higher space. Can. J. Math. 16, 657–682 (1964)

    Article  MathSciNet  Google Scholar 

  8. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. I. North-Holland Mathematical Library, vol. 16. North-Holland, Amsterdam (1977)

  9. Swanepoel, K.J.: Combinatorial distance geometry in normed spaces. In: New Trends in Intuitive Geometry. Bolyai Soc. Math. Stud., vol. 27, pp. 407–458. János Bolyai Math. Soc., Budapest (2018)

  10. Swinnerton-Dyer, H.P.F.: Extremal lattices of convex bodies. Proc. Camb. Philos. Soc. 49, 161–162 (1953)

    Article  MathSciNet  Google Scholar 

  11. Talata, I.: Exponential lower bound for the translative kissing numbers of \(d\)-dimensional convex bodies. Discrete Comput. Geom. 19(3), 447–455 (1998)

    Article  MathSciNet  Google Scholar 

  12. Tsfasman, M., Vlăduţ, S., Nogin, D.: Algebraic Geometric Codes: Basic Notions. Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007)

  13. Vlăduţ, S.: Lattices with exponentially large kissing numbers. Mosc. J. Comb. Number Theory 8(2), 163–177 (2019)

    Article  MathSciNet  Google Scholar 

  14. Zong, C.: The kissing number, blocking number and covering number of a convex body. In: Surveys on Discrete and Computational Geometry. Contemp. Math., vol. 453, pp. 529–548. American Mathematical Society, Providence (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Vlăduţ.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlăduţ, S. On the Lattice Hadwiger Number of Superballs and Some Other Bodies. Discrete Comput Geom 66, 1105–1112 (2021). https://doi.org/10.1007/s00454-020-00261-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00261-5

Mathematics Subject Classification

Navigation