Skip to main content
Log in

Characterization of the Biodiesel Degrading Acinetobacter oleivorans Strain PT8 Isolated from the Fecal Material of a Painted Turtle (Chrysemys picta)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter species are gram-negative, non-fermenting bacteria with coccobacilli morphology. The bacteria are found ubiquitously and have the ability to occupy niches which include environmental sites, animals, and humans. The original purpose of this study was to determine if painted turtles (Chrysemys picta) living in the wild in Western Wisconsin were colonized with carbapenem-resistant bacteria. Fecal samples from ten turtles were examined for carbapenem-resistant bacteria. None of the isolates were found to be carbapenem resistant by antimicrobial susceptibility testing. However, all the isolates were resistant to other β-lactams and chloramphenicol classes of antimicrobials. One isolate, Acinetobacter oleivorans strain PT8, was selected for additional characterization, including whole-genome sequencing (WGS). Strain PT8 is capable of degrading biodiesel, forming biofilms, and has a putative type 6 gene cluster. Finally, the taxonomic position of the available whole-genome sequences of 25 A. oleivorans genomes from purified isolates was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B (2016) Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 30:409–447

    Article  Google Scholar 

  2. Al Atrouni A, Joly-Guillou ML, Hamze M, Kempf M (2016) Reservoirs of non-baumannii Acinetobacter species. Front Microbiol 7:49

    Article  Google Scholar 

  3. Doughari HJ, Ndakidemi PA, Human IS, Benade S (2011) The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ 26:101–112

    Article  Google Scholar 

  4. Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE (2013) The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 6:453–492

    Article  Google Scholar 

  5. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, MacDonald IJ, Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo RA, Gill SR (2008) Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 190:8053–8064

    Article  CAS  Google Scholar 

  6. Blackwell GA, Hamidian M, Hall RM (2016) IncM plasmid R1215 is the source of chromosomally located regions containing multiple antibiotic resistance genes in the globally disseminated Acinetobacter baumannii GC1 and GC2 clones. mSphere 1:e00117-16

  7. Sader HS, Mendes CF, Pignatari AC, Pfaller MA (1996) Use of macrorestriction analysis to demonstrate interhospital spread of multiresistant Acinetobacter baumannii in São Pãulo, Brazil. Clin Infect Dis 23:631–634

    Article  CAS  Google Scholar 

  8. Amudhan MS, Sekar U, Kamalanathan A, Balaraman S (2012) blaIMP and blaVIM mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J Infect Dev Ctries 6:757–762

    Article  CAS  Google Scholar 

  9. Artiaco S, Cicero G, Bellomo F, Bianchi P (2012) Multidrug-resistant Acinetobacter baumannii infection following para-articular steroid injection in the knee–a case report. Bull NYU Hosp Jt Dis 70:276–278

    PubMed  Google Scholar 

  10. Wang S, Xia P, Xiong Z, Qiu X, Feng W, Chen S, Sun F (2015) Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii clinical isolates from the respiratory department of a tertiary care hospital in Henan, China. J Glob Antimicrob Resist 3:309–310

    Article  Google Scholar 

  11. Li J, Fu Y, Zhang J, Zhao Y, Fan X, Yu L, Wang Y, Zhang X, Li C (2020) The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. J Chemother 19:1–9

    Google Scholar 

  12. Radó J, Kaszab E, Benedek T, Kriszt B, Szoboszlay S (2019) First isolation of carbapenem-resistant Acinetobacter beijerinckii from an environmental sample. Acta Microbiol Immunol Hung 66:113–130

    Article  Google Scholar 

  13. Liu Q, Tang J, Bai Z, Hecker M, Giesy JP (2015) Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield. China. Sci Rep 5:11068

    Article  CAS  Google Scholar 

  14. Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J (2017) Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation. Int J Phytoremediation 19:955‐963Mara

  15. Decorosi F, Viti C, Giovannetti L, Papaleo MC, Maida I, Perrin E, Fondi M, Vaneechoutte M, Nemec A, van den Barselaar M, Dijkshoorn L, Fani R (2012) Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel. Res Microbiol 163:161–172

    Article  Google Scholar 

  16. Kang YS, Jung J, Jeon CO, Park W (2011) Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. J Microbiol 49:29–34

    Article  CAS  Google Scholar 

  17. Jung J, Noh J, Park W (2011) Physiological and metabolic responses for hexadecane degradation in Acinetobacter oleivorans DR1. J Microbiol 49:208–215

    Article  CAS  Google Scholar 

  18. Jang IA, Kim J, Park W (2016) Endogenous hydrogen peroxide increases biofilm formation by inducing exopolysaccharide production in Acinetobacter oleivorans DR1. Sci Rep 6:21121

    Article  CAS  Google Scholar 

  19. Ernst CH, Lovich JE (2009) Turtles of the United States and Canada. Baltimore: Johns Hopkins University Press, 2nd Ed. p 840

  20. Fugate HM, Kapfer JM, McLaughlin RW (2020) Analysis of the microbiota in the fecal material of painted turtles (Chrysemys picta). Curr Microbiol 77:11–14

    Article  CAS  Google Scholar 

  21. Madden TL (2002) The BLAST sequence analysis tool. In: McEntyre J (ed) The NCBI handbook. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD

  22. Clinical and Laboratory Standards Institute (2013) Performance standards for antimicrobial susceptibility testing; 23rd informational supplement. M100-S23. Clinical and Laboratory Standards Institute, Wayne, PA

  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  Google Scholar 

  24. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA 3rd, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  Google Scholar 

  25. Galata V, Fehlmann T, Backes C, Keller A (2019) PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res. 47:D195–D202

    Article  CAS  Google Scholar 

  26. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R (2020) The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612

    CAS  PubMed  Google Scholar 

  27. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, Vonstein V, Wattam AR, Yoo H (2016) PATtyFams: protein families for the microbial genomes in the PATRIC database. Front Microbiol 7:118

    Article  Google Scholar 

  28. Fernando-Bautista L, Vicente G, Rodríguez R, Pacheco M (2009) Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass and Bioenergy 33:862–872

    Article  Google Scholar 

  29. Rasmussen C, Allender MC, Phillips CA, Byrd J, Lloyd T, Maddox C (2017) Multi-drug resistance patterns of enteric bacteria in two populations of free-ranging eastern box turtles (Terrapene carolina carolina). J Zoo Wildl Med 3:708–715

    Article  Google Scholar 

  30. Delli Paoli Carini A, Ariel E, Picard J, Elliott L (2017) Antibiotic resistant bacterial isolates from captive green turtles and in vitro sensitivity to bacteriophages. Int J Microbiol 2017:5798161

    Article  Google Scholar 

  31. Blasi MF, Migliore L, Mattei D, Rotini A, Thaller MC, Alduina R (2020) Antibiotic resistance of Gram-negative bacteria from wild captured loggerhead sea turtles. Antibiotics (Basel) 9:162

    Article  CAS  Google Scholar 

  32. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131

    Article  CAS  Google Scholar 

  33. Park C, Shin B, Jung J, Lee Y, Park W (2017) Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation. Microb Biotechnol 10:1809–1823

    Article  CAS  Google Scholar 

  34. Baumann P (1968) Isolation of Acinetobacter from soil and water. J Bacteriol 96:39–42

    Article  CAS  Google Scholar 

  35. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  36. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  Google Scholar 

  37. Larcher R, Pantel A, Arnaud E, Sotto A, Lavigne JP (2017) First report of cavitary pneumonia due to community-acquired Acinetobacter pittii, study of virulence and overview of pathogenesis and treatment. BMC Infect Dis 17:477

    Article  Google Scholar 

  38. Kim SW, Oh MH, Jun SH, Jeon H, Kim SI, Kim K, Lee YC, Lee JC (2016) Outer membrane Protein A plays a role in pathogenesis of Acinetobacter nosocomialis. Virulence 7:413–426

    Article  CAS  Google Scholar 

  39. Cianfanelli FR, Monlezun L, Coulthurst SJ (2016) Aim, load, fire: The type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24:51–62

    Article  CAS  Google Scholar 

  40. Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F (2018) Microbial wars: competition in ecological niches and within the microbiome. Microbial Cell 5:215–219

    Article  Google Scholar 

  41. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD (2011) Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:343–347

    Article  CAS  Google Scholar 

  42. Russell AB, Peterson SB, Mougous JD (2014) Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12:137–148

    Article  CAS  Google Scholar 

  43. Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21

    Article  CAS  Google Scholar 

  44. Alekseyev MA, Basler Pevzner PA, M, (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 370:20150021

    Article  Google Scholar 

  45. Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99:1099–1118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard William McLaughlin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deems, A., Du Prey, M., Dowd, S.E. et al. Characterization of the Biodiesel Degrading Acinetobacter oleivorans Strain PT8 Isolated from the Fecal Material of a Painted Turtle (Chrysemys picta). Curr Microbiol 78, 522–527 (2021). https://doi.org/10.1007/s00284-020-02320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02320-9

Navigation