Skip to main content
Log in

A semi-infinite edge dislocation model for the proportionality limit stress of metals under high strain rate

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Micromechanics of strain rate dependent elastic response, within the proportionality limit in metals is investigated, on the basis of dislocation kinetics. It is postulated that, the strain rate dependence of proportionality limit stress is dominated by inertia of dislocations, over drag controlled mechanisms. Subsequently, kinetic energy of accelerating edge dislocation at its incipient motion, is expressed. The proposed, inertia-dominated model is non dissipative in nature when compared with that of Frank-Read dislocation nucleation-based model and dislocation-drag mechanism-based model at high strain rates. Using Hamiltonian formalism, a new rate dependent slip criterion with corresponding threshold shear stress is derived. Experimental data on FCC samples, Aluminium-1100-0 and Oxygen free Copper; and BCC samples, pure Iron and mild steel, within a benchmark strain rate of 104 s−1, are used to validate the model prediction. Reported theory on dislocation drag controlled model is compared with the proposed inertia-based theory, using published experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

(x, y):

Spatial co-ordinates

a′0 :

Acceleration of dislocation at a reference strain rate

\(^\prime {\dot \Upsilon _0}\) :

Magnitude of reference shear strain rate

a′:

Acceleration of dislocation at incipient motion

c0 :

Speed of sound in elastic medium

c1 :

Longitudinal wave speed

c2 :

Shear wave speed

Fb :

Internal restoring force of dislocation

h′,k′,l′:

Direction cosines of slip plane

medge :

Mass of an edge dislocation

mscrew :

Mass of screw dislocation

tnuc :

Frank-Read source activation period

\({\tilde{\text{u}}}\) :

Local displacement field of atoms

UE :

Time dependent strain energy density

Umisfit :

Misfit energy of dislocation

v0 :

Terminal velocity at reference strain rate

WE :

Time independent strain energy density

WTot :

Total external work done on the dislocation

\({{\dot \updelta }}\) :

Time rate of change of disregistry

δ′:

Gradient of disregistry

εxy :

Macroscopic shear strain

ξi :

Internal independent variables governing the surface energy

ρm :

Mass density of the bulk material

σyo :

Proportionality limit stress

σ0 :

Strain rate independent critical shear stress

σPN :

Peierls-Nabarro stress

σPSS :

Pseudo static threshold shear stress

σsrc :

Frank-Read source based critical shear stress

\({{{\uptau }}_{\rm{0}}}\) :

Transient period at reference strain rate

\(^\prime {\dot \Upsilon _0}\) :

Magnitude of applied shear strain rate

a:

Lattice factor

\({\bar{\rm a}}\) :

Average acceleration of dislocation at incipient motion

b:

Magnitude of Burgers vector

d:

Inter planar distance

E:

Modulus of elasticity

G:

Shear modulus

K:

Kinetic energy of dislocation at incipient motion

L:

Limit of integration domain

\(\mathcal{L}\) :

Lagrangian

M:

Taylor’s factor

p:

Rate exponent of dislocation incipient motion

t:

Time

u:

Displacement field with reference to the dislocation core

v:

Average velocity of mobile dislocations

α:

Inertial-mass factor

γ:

Surface energy of dislocation

δ:

Disregistry between top and bottom half planes of atoms

ζ:

Dislocation half-width

κ:

Dislocation mass scaling factor

λ:

Lame’s parameter

ν:

Poisson’s ratio

ρ:

Dislocation density

τ:

Transient period of dislocation, prior to the onset of macroscopic slip

Ѵ:

Potential energy

References

  1. Langseth M, Lindholm US, Larsen PK, Lian B (1991) Strain-Rate Sensitivity of Mild Steel Grade St52-3N. J Eng Mech 117:719–732. https://doi.org/10.1061/(ASCE)0733-9399117:4(719)

    Article  Google Scholar 

  2. Marsh KJ, Campbell JD (1963) The effect of strain rate on the post-yield flow of mild steel. J Mech Phys Solids. https://doi.org/10.1016/0022-5096(63)90007-3

    Article  Google Scholar 

  3. Singh NK, Cadoni E, Singha MK, Gupta NK (2013) Dynamic tensile and compressive behaviors of mild steel at wide range of strain rates. J Eng Mech © ASCE 139:1197–1207. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000557

    Article  Google Scholar 

  4. Wang W, Ma Y, Yang M et al (2018) Strain rate effect on tensile behavior for a high specific strength steel: From quasi-static to intermediate strain rates. Metals (Basel). https://doi.org/10.3390/met8010011

    Article  Google Scholar 

  5. Campbell JD, Ferguson WG (1970) The temperature and strain-rate dependence of the shear strength of mild steel. Philos Mag 21:63–82. https://doi.org/10.1080/14786437008238397

    Article  Google Scholar 

  6. Abo-Elkhier M (2004) Modeling of high-temperature deformation of commercial pure aluminum (1050). J Mater Eng Perform 13:241–247. https://doi.org/10.1361/10599490418280

    Article  Google Scholar 

  7. Davies RG, Magee CL (1975) The effect of strain-rate upon the tensile deformation of materials. J Eng Mater Technol 97:151–155. https://doi.org/10.1115/1.3443275

    Article  Google Scholar 

  8. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proc 7th Int Symp Ballist

  9. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48. https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  10. Harding J (1983) High-rate straining and mechanical properties of materials. Explos Weld Form Compact. https://doi.org/10.1007/978-94-011-9751-9_4

    Article  Google Scholar 

  11. Timmel M, Kaliske M, Kolling S, Mueller R (2011) On configurational forces in hyperelastic materials under shock and impact. Comput Mech 47:93–104. https://doi.org/10.1007/s00466-010-0537-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Hirth JP, Lothe J (1982) Theory of Dislocations, vol 2. Krieger publishing company, Malabar, Florida

    MATH  Google Scholar 

  13. Hirth JP, Zbib HM, Lothe J (1998) Forces on high velocity dislocations. Model Simul Mater Sci Eng 6:165–169. https://doi.org/10.1088/0965-0393/6/2/006

    Article  Google Scholar 

  14. Pellegrini Y-P (2010) Dynamic Peierls-Nabarro equations for elastically isotropic crystals. Phys Rev B 81:024101. https://doi.org/10.1103/PhysRevB.81.024101

    Article  Google Scholar 

  15. Brandl C, Derlet PM, Van Swygenhoven H (2009) Strain rates in molecular dynamics simulations of nanocrystalline metals. Philos Mag 89:3465–3475. https://doi.org/10.1080/14786430903313690

    Article  Google Scholar 

  16. Shao JL, Wang P, Zhang FG, He AM (2018) Hcp/fcc nucleation in bcc iron under different anisotropic compressions at high strain rate: molecular dynamics study. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-25758-1

    Article  Google Scholar 

  17. Marais ST, Tait RB, Cloete TJ, Nurick GN (2004) Material testing at high strain rate using the split Hopkinson pressure bar. Lat Am J Solids Struct 1:319–337

    Google Scholar 

  18. Schlick T (2010) Molecular modeling and simulation: an interdisciplinary Guide. Springer, Berlin

    Book  Google Scholar 

  19. Bianchini F, Glielmo A, Kermode JR, De Vita A (2019) Enabling QM-accurate simulation of dislocation motion in γ-Ni and α-Fe using a hybrid multiscale approach. Phys Rev Mater. https://doi.org/10.1103/PhysRevMaterials.3.043605

    Article  Google Scholar 

  20. Ansart JP, Dormeval R (1989) About the strain rate dependence of yield stress and flow stress of materials. In: Tokuda M (ed) Advances in plasticity. Elsevier, Amsterdam, pp 371–374

    Google Scholar 

  21. El-Magd E (1994) Mechanical properties at high strain rates. J Phys IV 04:C8-149. https://doi.org/10.1051/jp4:1994823

    Article  Google Scholar 

  22. Gordeliy E, Detournay E (2011) Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space. Int J Solids Struct 48:2614–2629. https://doi.org/10.1016/j.ijsolstr.2011.05.009

    Article  Google Scholar 

  23. Crouch SL (1976) Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int J Numer Methods Eng 10:301–343. https://doi.org/10.1002/nme.1620100206

    Article  MathSciNet  MATH  Google Scholar 

  24. Orowan E (1934) ZurKristallplastizität III Zeitschrift für Phys 89:605–613. https://doi.org/10.1007/BF01341478

    Article  Google Scholar 

  25. Taylor GI (1934) The mechanism of plastic deformation of crystals. part ii. theoretical. Proc R Soc A Math Phys Eng Sci 145:388–404. https://doi.org/10.1098/rspa.1934.0107

    Article  MATH  Google Scholar 

  26. Polanyi M (1934) Lattice distortion which originates plastic flow. Zeitschrift fur Phys 89:660–664. https://doi.org/10.1007/BF01341481

    Article  Google Scholar 

  27. Tang Y (2018) Uncovering the inertia of dislocation motion and negative mechanical response in crystals. Sci Rep. https://doi.org/10.1038/s41598-017-18254-5

    Article  Google Scholar 

  28. Markenscoff X, Ni L (2001) The transient motion of a dislocation with a ramp-like core. J Mech Phys Solids 49:1603–1619. https://doi.org/10.1016/S0022-5096(00)00062-4

    Article  MATH  Google Scholar 

  29. Pellegrini YP (2012) Screw and edge dislocations with time-dependent core width: from dynamical core equations to an equation of motion. J Mech Phys Solids 60:227–249. https://doi.org/10.1016/j.jmps.2011.11.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Shishvan SS, Van der Giessen E (2010) Distribution of dislocation source length and the size dependent yield strength in freestanding thin films. J Mech Phys Solids 58:678–695. https://doi.org/10.1016/j.jmps.2010.02.011

    Article  Google Scholar 

  31. Gurrutxaga-Lerma B, Balint DS, Dini D et al (2015) The role of homogeneous nucleation in planar dynamic discrete dislocation plasticity. J Appl Mech 82:071008. https://doi.org/10.1115/1.4030320

    Article  Google Scholar 

  32. Özdemir I, Yalçinkaya T (2014) Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput Mech. https://doi.org/10.1007/s00466-014-0982-8

    Article  MathSciNet  Google Scholar 

  33. Suzuki T, Takeuchi S, Yoshinaga H (1991) Dislocation Dynamics and Plasticity. Springer, Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  34. Taylor G (1992) Thermally-activated deformation of BCC metals and alloys. Prog Mater Sci. https://doi.org/10.1016/0079-6425(92)90004-Q

    Article  Google Scholar 

  35. Nadgornyi E (1988) Dislocation dynamics and mechanical properties of crystals. Prog Mater Sci 31:1–530

    Article  Google Scholar 

  36. Hirth JP, Lothe J, Nabarro FRN, Smoluchowski R (1968) Theory of dislocations and theory of crystal dislocations. Phys Today 21:85–86. https://doi.org/10.1063/1.3035074

    Article  Google Scholar 

  37. Eshelby JD (1962) The interaction of kinks and elastic waves. Proc R Soc A Math Phys Eng Sci 266:222–246

    MathSciNet  MATH  Google Scholar 

  38. Sietsma J (2012) Nucleation and growth during the austenite-to-ferrite phase transformation in steels after plastic deformation. In: Pereloma E (ed) Phase Transformations in Steels. Elsevier, Amsterdam, pp 505–526

    Chapter  Google Scholar 

  39. Vítek V (1968) Intrinsic stacking faults in body-centred cubic crystals. Philos Mag 18:773–786. https://doi.org/10.1080/14786436808227500

    Article  Google Scholar 

  40. Peierls R (1940) The size of a dislocation. Proc Phys Soc 52:34–37. https://doi.org/10.1088/0959-5309/52/1/305

    Article  Google Scholar 

  41. Nabarro FRN (1947) Dislocations in a simple cubic lattice. Proc Phys Soc 59:256–272. https://doi.org/10.1088/0959-5309/59/2/309

    Article  Google Scholar 

  42. Eshelby JD (1949) LXXXII. Edge dislocations in anisotropic materials. London, Edinburgh, Dublin Philos Mag J Sci 40:903–912. https://doi.org/10.1080/14786444908561420

    Article  MATH  Google Scholar 

  43. Eshelby JD (1949) Uniformly moving dislocations. Proc Phys Soc Sect A 62:307–314. https://doi.org/10.1088/0370-1298/62/5/307

    Article  Google Scholar 

  44. Peach M, Koehler JS (1950) The forces exerted on dislocations and the stress fields produced by them. Phys Rev 80:436–439. https://doi.org/10.1103/PhysRev.80.436

    Article  MathSciNet  MATH  Google Scholar 

  45. Gurrutxaga-Lerma B, Balint DS, Dini D, Sutton AP (2015) Elastodynamic image forces on dislocations. Proc R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rspa.2015.0433

    Article  MATH  Google Scholar 

  46. Gurrutxaga-Lerma B, Balint DS, Dini D et al (2013) A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading. Proc R Soc A Math Phys Eng Sci 469:20130141. https://doi.org/10.1098/rspa.2013.0141

    Article  MathSciNet  MATH  Google Scholar 

  47. Gurrutxaga-Lerma B, Balint DS, Dini D, et al (2014) Dynamic Discrete Dislocation Plasticity. In: Bordas S (ed) Advances in Applied Mechanics. Elsevier Inc., pp 93–224

  48. Gurrutxaga-Lerma B, Balint DS, Dini D et al (2015) Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics. Phys Rev Lett 114:1–5. https://doi.org/10.1103/PhysRevLett.114.174301

    Article  Google Scholar 

  49. Agnihotri PK, Van Der Giessen E (2015) On the rate sensitivity in discrete dislocation plasticity. Mech Mater 90:37–46. https://doi.org/10.1016/j.mechmat.2015.01.009

    Article  Google Scholar 

  50. Roos A, De Hosson JTM, Van der Giessen E (2001) High-speed dislocations in high strain-rate deformations. Comput Mater Sci 20:19–27. https://doi.org/10.1016/S0927-0256(00)00118-X

    Article  Google Scholar 

  51. Shehadeh MA, Zbib HM, De La Rubia TD (2005) Multiscale dislocation dynamics simulations of shock compression in copper single crystal. Int J Plast 21:2369–2390. https://doi.org/10.1016/j.ijplas.2004.12.004

    Article  MATH  Google Scholar 

  52. Shehadeh MA, Bringa EM, Zbib HM et al (2006) Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl Phys Lett 89:2004–2007. https://doi.org/10.1063/1.2364853

    Article  Google Scholar 

  53. Van der Giessen E, Needleman A (1995) Discrete dislocation plasticity: a simple planar model. Model Simul Mater Sci Eng 3:689–735. https://doi.org/10.1088/0965-0393/3/5/008

    Article  Google Scholar 

  54. Zbib HM, Diaz de la Rubia T (2002) A multiscale model of plasticity. Int J Plast 18:1133–1163. https://doi.org/10.1016/S0749-6419(01)00044-4

    Article  MATH  Google Scholar 

  55. Shehadeh MA, Zbib HM, Diaz De La Rubia T (2005) Modelling the dynamic deformation and patterning in fee single crystals at high strain rates: dislocation dynamics plasticity analysis. Philos Mag 85:1667–1685. https://doi.org/10.1080/14786430500036470

    Article  Google Scholar 

  56. Wang ZQ, Beyerlein IJ, Lesar R (2007) Dislocation motion in high strain-rate deformation. Philos Mag 87:2263–2279. https://doi.org/10.1080/14786430601153422

    Article  Google Scholar 

  57. Wang ZQ, Beyerlein IJ, LeSar R (2007) The importance of cross-slip in high-rate deformation. Model Simul Mater Sci Eng 15:675–690. https://doi.org/10.1088/0965-0393/15/6/006

    Article  Google Scholar 

  58. Gurrutxaga-Lerma B, Balint DS, Dini D, Sutton AP (2015) The mechanisms governing the activation of dislocation sources in aluminum at different strain rates. J Mech Phys Solids 84:273–292. https://doi.org/10.1016/j.jmps.2015.08.008

    Article  Google Scholar 

  59. Wang W, Ma Y, Yang M et al (2017) Strain rate effect on tensile behavior for a high specific strength steel: from quasi-static to intermediate strain rates. Metals (Basel). https://doi.org/10.3390/met8010011

    Article  Google Scholar 

  60. Liu ZL, Liu XM, Zhuang Z, You XC (2009) A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales. Int J Plast 25:1436–1455. https://doi.org/10.1016/j.ijplas.2008.11.006

    Article  MATH  Google Scholar 

  61. Bulatov VV, Cai W (2006) Computer simulations of dislocations. Oxford University Press, Oxford

    Book  Google Scholar 

  62. Huh H, Kim SB, Song JH, Lim JH (2008) Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body. Int J Mech Sci 50:918–931. https://doi.org/10.1016/j.ijmecsci.2007.09.004

    Article  MATH  Google Scholar 

  63. Kontorova T, Frenkel J (1938) On the theory of plastic deformation and twinning. II Zh Eksp Teor Fiz 8:1340–1348

    MATH  Google Scholar 

  64. Frank FC (1948) On the equations of motion of crystal dislocations. Proc Phys Soc Sect A 62:131. https://doi.org/10.1007/978-1-4613-8865-4_60

    Article  MATH  Google Scholar 

  65. Eshelby JD (1953) The equation of motion of a dislocation. Phys Rev 90:248–255. https://doi.org/10.1103/PhysRev.90.248

    Article  MathSciNet  MATH  Google Scholar 

  66. Markenscoff X (1980) The transient motion of a nonuniformly moving dislocation. J Elast 10:193–201. https://doi.org/10.1007/BF00044503

    Article  MathSciNet  MATH  Google Scholar 

  67. Landau AI (1981) The effect of dislocation inertia on the thermally activated low-temperature plasticity of materials. Phys Status Solidi 61:415–423. https://doi.org/10.1002/pssa.2210650202

    Article  Google Scholar 

  68. Markenscoff X, Clifton RJ (1981) The nonuniformly moving edge dislocation. J Mech Phys Solids 29:253–262. https://doi.org/10.1016/0022-5096(81)90029-6

    Article  MATH  Google Scholar 

  69. Pillon L, Denoual C, Pellegrini YP (2007) Equation of motion for dislocations with inertial effects. Phys Rev B Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.76.224105

    Article  Google Scholar 

  70. Kojima H, Suzuki T (1968) Electron drag and flow stress in niobium and lead at 4.2°K. Phys Rev Lett 21:896–898. https://doi.org/10.1103/PhysRevLett.21.896

    Article  Google Scholar 

  71. Alers GA, Buck O, Tittmann BR (1969) Measurements of plastic flow in superconductors and the electron-dislocation interaction. Phys Rev Lett 23:290–293. https://doi.org/10.1103/PhysRevLett.23.290

    Article  Google Scholar 

  72. Marion JB (1965) Hamilton’s Principle—Lagrangian and Hamiltonian Dynamics. Stephen thornton classical dynamics of particles and systems. Elsevier, Amsterdam, pp 214–266

    Chapter  Google Scholar 

  73. Armstrong RW, Arnold W, Zerilli FJ (2007) Dislocation mechanics of shock-induced plasticity. Metall Mater Trans A Phys Metall Mater Sci A 38:2605–2610

    Article  Google Scholar 

  74. Armstrong RW, Walley SM (2008) High strain rate properties of metals and alloys. Int Mater Rev 53:105–128. https://doi.org/10.1179/174328008X277795

    Article  Google Scholar 

  75. Yaghoobi M, Voyiadjis GZ (2018) The effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates. Acta Mater 151:1–10. https://doi.org/10.1016/j.actamat.2018.03.029

    Article  Google Scholar 

  76. Armstrong R, Codd I, Douthwaite RM, Petch NJ (1962) The plastic deformation of polycrystalline aggregates. Philos Mag 7:45–58. https://doi.org/10.1080/14786436208201857

    Article  Google Scholar 

  77. Ni L, Markenscoff X (2008) The self-force and effective mass of a generally accelerating dislocation I: screw dislocation. J Mech Phys Solids 56:1348–1379. https://doi.org/10.1016/j.jmps.2007.09.002

    Article  MathSciNet  MATH  Google Scholar 

  78. Ni L (2005) The effective mass of an accelerating dislocation. University of California, San Diego

    Google Scholar 

  79. Rosakis P (2001) Supersonic dislocation kinetics from an augmented Peierls model. Phys Rev Lett 86:95–98. https://doi.org/10.1103/PhysRevLett.86.95

    Article  Google Scholar 

  80. Pellegrini YP (2014) Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: s collective-variable approach. Phys Rev B Condens Matter Mater Phys 90:1–18. https://doi.org/10.1103/PhysRevB.90.054120

    Article  Google Scholar 

  81. Weertman J, Weertman JR (1992) Elementary dislocation theory. Oxford University Press, Oxford

    MATH  Google Scholar 

  82. Gillis PP, Kratochvil J (1970) Dislocation acceleration Philos Mag 21:425–432. https://doi.org/10.1080/14786437008238427

    Article  Google Scholar 

  83. Weertman J (1961) Response of metals to high velocity deformation. In: Shewmon, In: Paul G. VFZ (ed) Proceedings of a Technical Conference. Metallurgical society conferences . Interscience publishers, pp 205–246

  84. Po G, Cui Y, Rivera D et al (2016) A phenomenological dislocation mobility law for bcc metals. Acta Mater 119:123–135. https://doi.org/10.1016/j.actamat.2016.08.016

    Article  Google Scholar 

  85. Hu J, Liu Z, Van der Giessen E, Zhuang Z (2017) Strain rate effects on the plastic flow in submicron copper pillars: Considering the influence of sample size and dislocation nucleation. Extrem Mech Lett 17:33–37. https://doi.org/10.1016/j.eml.2017.09.011

    Article  Google Scholar 

  86. Oren E, Yahel E, Makov G (2017) Dislocation kinematics: a molecular dynamics study in Cu. Model Simul Mater Sci Eng. https://doi.org/10.1088/1361-651X/aa52a7

    Article  Google Scholar 

  87. Mordehai D, Kelson I, Makov G (2006) Nonplanar core and dynamical behavior of screw dislocations in copper at high velocities. Phys Rev B Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.74.184115

    Article  Google Scholar 

  88. Tsuzuki H, Branicio PS, Rino JP (2008) Accelerating dislocations to transonic and supersonic speeds in anisotropic metals. Appl Phys Lett. https://doi.org/10.1063/1.2921786

    Article  Google Scholar 

  89. Kuksin AY, Stegaĭlov VV, Yanilkin AV (2008) Molecular-dynamics simulation of edge-dislocation dynamics in aluminum. Dokl Phys 53:287–291. https://doi.org/10.1134/s1028335808060013

    Article  Google Scholar 

  90. Abu Al-Rub RK, Voyiadjis GZ (2006) A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I—Theoretical formulation. Int J Damage Mech. https://doi.org/10.1177/1056789506058046

    Article  Google Scholar 

  91. Khan AS, Huang S (1992) Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10–5-104s-1. Int J Plast 8:397–424. https://doi.org/10.1016/0749-6419(92)90057-J

    Article  Google Scholar 

  92. Bao WP, Xiong ZP, Ren XP, Wang FM (2013) Effect of strain rate on mechanical properties of pure iron. Adv Mater Res 705:21–25. https://doi.org/10.4028/www.scientific.net/amr.705.21

    Article  Google Scholar 

  93. Regazzoni G, Kocks UF, Follansbee PS (1987) Dislocation kinetics at high strain rates. Acta Metall 35:2865–2875. https://doi.org/10.1016/0001-6160(87)90285-9

    Article  Google Scholar 

  94. Taylor GI (1938) plastic strain in metals. The Institute of Metals, London

    Google Scholar 

  95. Shen JH, Li YL, Wei Q (2013) Statistic derivation of Taylor factors for polycrystalline metals with application to pure magnesium. Mater Sci Eng A 582:270–275. https://doi.org/10.1016/j.msea.2013.06.025

    Article  Google Scholar 

  96. Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273. https://doi.org/10.4324/9781315279015

    Article  Google Scholar 

  97. Przybyla CP, Adams BL, Miles MP (2007) Methodology for determining the variance of the taylor factor: application in Fe-3%Si. J Eng Mater Technol 129:82. https://doi.org/10.1115/1.2400268

    Article  Google Scholar 

  98. Meyers MA, Kumar Chawla K (2009) Mechanical behavior of materials, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  99. Weinberger CR, Boyce BL, Battaile CC (2013) Slip planes in bcc transition metals. Int Mater Rev. https://doi.org/10.1179/1743280412Y.0000000015

    Article  Google Scholar 

  100. Yogo Y, Sawamura M, Harada R et al (2017) Stress-strain curve of pure aluminum in a super large strain range with strain rate and temperature dependency. Procedia Eng 207:161–166. https://doi.org/10.1016/j.proeng.2017.10.755

    Article  Google Scholar 

  101. Zhang T, Wang Z, Wang Y, Chen Z (2019) Experimental study on the mechanical properties of oxygen-free copper used in high energy physics detectors and accelerators. Nucl Inst Methods Phys Res A 935:8–16. https://doi.org/10.1016/j.nima.2019.04.112

    Article  Google Scholar 

  102. Kim JS, Huh H (2011) Rate Dependent Material Properties of an OFHC copper Film. In: Conference Proceedings of the Society for Experimental Mechanics Series 99:459–465

  103. Roters F (2003) A new concept for the calculation of the mobile dislocation density in constitutive models of strain hardening. Phys Status Solidi Basic Res 240:68–74. https://doi.org/10.1002/pssb.200301873

    Article  Google Scholar 

  104. Orlová A (1988) On the mobile dislocation density in creep. Czechoslov J Phys 38:502–504. https://doi.org/10.1007/BF01597464

    Article  Google Scholar 

  105. Voyiadjis GZ, Abed FH (2005) Effect of dislocation density evolution on the thermomechanical response of metals with different crystal structures at low and high strain rates and temperatures. Arch Mech 57:299–343

    MATH  Google Scholar 

  106. Kelly JM, Gillis PP (1974) Continuum descriptions of dislocations under stress reversals. J Appl Phys 45:1091–1096. https://doi.org/10.1063/1.1663372

    Article  Google Scholar 

  107. Brindley BJ, Barnby JT (1966) Dynamic strain ageing in mild steel. Acta Metall 14:1765–1780. https://doi.org/10.1016/0001-6160(66)90028-9

    Article  Google Scholar 

  108. Schafler E, Zehetbauer M, Borbely A, Ungar T (1997) Dislocation densities and internal stresses in large strain cold worked pure iron. Mater Sci Eng A 234–236:445–448. https://doi.org/10.1016/s0921-5093(97)00168-8

    Article  Google Scholar 

  109. Nakashima K, Suzuki M, Futamura Y et al (2006) Limit of Dislocation Density and Dislocation Strengthening in Iron. Mater Sci Forum 503–504:627–632. https://doi.org/10.4028/www.scientific.net/msf.503-504.627

    Article  Google Scholar 

  110. Hu Q, Zhao F, Fu H et al (2017) Dislocation density and mechanical threshold stress in OFHC copper subjected to SHPB loading and plate impact. Mater Sci Eng A 695:230–238. https://doi.org/10.1016/j.msea.2017.03.112

    Article  Google Scholar 

  111. May J, Dinkel M, Amberger D et al (2007) Mechanical properties, dislocation density and grain structure of ultrafine-grained aluminum and aluminum-magnesium alloys. Metall Mater Trans A Phys Metall Mater Sci A. https://doi.org/10.1007/s11661-007-9110-0

    Article  Google Scholar 

  112. Orowan E (1940) Problems of plastic gliding. Proc Phys Soc 52:8–22. https://doi.org/10.1088/0959-5309/52/1/303

    Article  Google Scholar 

  113. Lu G, Kioussis N, Bulatov VV, Kaxiras E (2001) Dislocation core properties of aluminum: a first-principles study. Mater Sci Eng A. https://doi.org/10.1016/S0921-5093(00)01711-1

    Article  Google Scholar 

  114. Staker MR, Holt DL (1972) The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700°C. Acta Metall 20:569–579. https://doi.org/10.1016/0001-6160(72)90012-0

    Article  Google Scholar 

  115. Bitzek E, Weygand D, Gumbsch P (2004) Atomistic study of edge dislocations in FCC metals: drag and inertial effects. IUTAM Symp Mesoscopic Dyn Fract Process Mater Strength. https://doi.org/10.1007/978-1-4020-2111-4_5

    Article  Google Scholar 

  116. Bitzek E, Gumbsch P (2004) Atomistic study of drag, surface and inertial effects on edge dislocations in face-centered cubic metals. Mater Sci Eng A 387–389:11–15. https://doi.org/10.1016/j.msea.2004.01.092

    Article  Google Scholar 

  117. Horstemeyer MF, Baskes MI, Plimpton SJ (2001) Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater 49:4363–4374. https://doi.org/10.1016/S1359-6454(01)00149-5

    Article  Google Scholar 

  118. Larose A, Brockhouse BN (2011) Lattice vibrations in copper at elevated temperatures studied by neutron scattering. Can J Phys 54:1990–2009. https://doi.org/10.1139/p76-237

    Article  Google Scholar 

  119. Ortiz M (1996) Computational micromechanics. Comput Mech 18:321–338. https://doi.org/10.1007/BF00376129

    Article  MATH  Google Scholar 

  120. Khoei AR, Aramoon A, Jahanbakhshi F, Dormohammadi H (2014) A coupling atomistic-continuum approach for modeling mechanical behavior of nano-crystalline structures. Comput Mech 54:269–286. https://doi.org/10.1007/s00466-014-0983-7

    Article  MathSciNet  MATH  Google Scholar 

  121. Ye W, Paliwal B, Goh WH et al (2012) Finite element modeling of dislocation in solids and its applications to the analysis of GaN nanostructures. Comput Mater Sci 58:154–161. https://doi.org/10.1016/j.commatsci.2012.01.025

    Article  Google Scholar 

  122. Kolednik O, Ochensberger W, Predan J, Fischer FD (2020) Driving forces on dislocations—An analytical and finite element study. Int J Solids Struct 190:181–198. https://doi.org/10.1016/j.ijsolstr.2019.11.008

    Article  Google Scholar 

  123. Sasaki K, Kishida M, Ekida Y (2002) Stress analysis in continuous media with an edge dislocation by finite element dislocation model. Int J Numer Methods Eng. https://doi.org/10.1002/nme.437

    Article  MATH  Google Scholar 

  124. Song Y, Voyiadjis GZ (2020) Constitutive modeling of dynamic strain aging for HCP metals. Eur J Mech A/Solids. https://doi.org/10.1016/j.euromechsol.2020.104034

    Article  MATH  Google Scholar 

  125. Voyiadjis GZ, Song Y, Rusinek A (2019) Constitutive model for metals with dynamic strain aging. Mech Mater. https://doi.org/10.1016/j.mechmat.2018.12.012

    Article  Google Scholar 

  126. Jin T, Mourad HM, Bronkhorst CA, Livescu V (2018) Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions. Comput Mech 61:3–18. https://doi.org/10.1007/s00466-017-1470-8

    Article  MathSciNet  MATH  Google Scholar 

  127. Kreuzer HGM, Pippan R (2004) Discrete dislocation simulation of nanoindentation. Comput Mech. https://doi.org/10.1007/s00466-003-0531-3

    Article  MATH  Google Scholar 

  128. Bin Jamal MN, Kumar A, Lakshmana Rao C, Basaran C (2019) Low cycle fatigue life prediction using unified mechanics theory in Ti-6Al-4V alloys. Entropy. https://doi.org/10.3390/e22010024

    Article  Google Scholar 

  129. Basaran C (2020) Introduction to unified mechanics theory with applications, 1st edn. Springer International Publishing, Berlin

    Google Scholar 

  130. Basaran C (2020) Entropy based fatigue, fracture, failure prediction and structural health monitoring. Entropy 22:1–4. https://doi.org/10.3390/e22101178

    Article  Google Scholar 

  131. Sosnovskiy LA, Sherbakov SS (2019) On the development of mechanothermodynamics as a new branch of Physics. Entropy. https://doi.org/10.3390/e21121188

    Article  MathSciNet  Google Scholar 

  132. Bendikiene R, Bahdanovich A, Cesnavicius R et al (2020) Tribo-fatigue behavior of austempered ductile iron monica as new structural material for rail-wheel system. Medziagotyra. https://doi.org/10.5755/j01.ms.26.4.25384

    Article  Google Scholar 

  133. Sherbakov SS (2011) Three-dimensional stress-strain state of a pipe with corrosion damage under complex loading. In: Kuo C-H (ed) Tribology—lubricants and lubrication, 1edn. InTech, Rijeka, Croatia, pp 139–172

    Google Scholar 

  134. Bahdanovich A, Bendikiene R, Cesnavicius R et al (2019) Research on tensile behaviour of new structural material MoNiCa. Medziagotyra. https://doi.org/10.5755/j01.ms.25.3.23079

    Article  Google Scholar 

  135. Sosnovskii LA, Komissarov VV, Shcherbakov SS (2012) A method of experimental study of friction in a active system. J Frict Wear 33:136–145. https://doi.org/10.3103/S1068366612020110

    Article  Google Scholar 

  136. Sherbakov SS, Zhuravkov MA (2013) Interaction of several bodies as applied to solving tribo-fatigue problems. Acta Mech 224:1541–1553. https://doi.org/10.1007/s00707-013-0822-5

    Article  MathSciNet  MATH  Google Scholar 

  137. Shcherbakov SS (2012) Modeling of the damaged state by the finite-element method on simultaneous action of contact and noncontact loads. J Eng Phys Thermophys 85:472–477. https://doi.org/10.1007/s10891-012-0675-0

    Article  Google Scholar 

  138. Shcherbakov SS (2013) Spatial stress-strain state of tribofatigue system in roll-shaft contact zone. Strength Mater 45:35–43. https://doi.org/10.1007/s11223-013-9430-9

    Article  Google Scholar 

  139. Sosnovskii LA, Komissarov VV, Shcherbakov SS (2012) Comparative experimental study of friction parameters in a tribopair and a force system. J Frict Wear 33:203–207. https://doi.org/10.3103/S1068366612030105

    Article  Google Scholar 

  140. Sherbakov SS (2019) Measurement and real time analysis of local damage in wear-and-fatigue tests. Devices Methods Meas 10:207–214

    Google Scholar 

  141. Brown LM (1964) The self-stress of dislocations and the shape of extended nodes. Philos Mag 10:441–466. https://doi.org/10.1080/14786436408224223

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemal Basaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

In order to provide all information required for the development of model, additional remarks are given subsequently.

Appendix A: train energy of initial-state disregistry

From the theory of elasticity, at-rest (static) shear stress generated at any point (X, Y), for an edge dislocation is as follows [12],

$$ {\upsigma }_{{{\text{XY}}}} = \frac{{{\text{Gb}}}}{{2{\uppi }\left( {1 - {\upnu }} \right)}}\frac{{{\text{X}}\left( {{\text{X}}^{2} - {\text{Y}}^{2} } \right)}}{{\left( {{\text{X}}^{2} + {\text{Y}}^{2} } \right)^{2} }} $$
(42)

where G is the shear modulus of bulk material and ν is the Poisson’s ratio. X and Y are the distances between the point at which stress is evaluated (x, y) and the point at which disregistry exists (\({\text{x}}^{\prime } ,{\text{y}}^{\prime }\)). Following the Eq. (42), an infinitesimal dislocation of Burgers vector \({\rm{d}}\delta \left( {{{\rm{x}}^\prime },{\rm{t}}} \right)\), located at \({\text{x}}^{\prime }\)(\({\text{X}} = {\text{x}} - {\text{x}}^{\prime }\)) produces a shear stress at some other point x in glide plane (\({\rm{Y}} = {\rm{y}} - {{\rm{y}}^\prime } = 0\)), as follows. Note that, at the point of discontinuity X = 0, \({\upsigma }_{{{\text{xy}}}}\) can’t be defined.

$$ {\upsigma }_{{{\text{xy}}}} \left( {{\text{x}},0} \right) = \frac{{\frac{{\text{G}}}{{2{\uppi }\left( {1 - {\upnu }} \right)}}{\text{d}}\delta \left( {{\text{x}}^{\prime } {\text{,t}}} \right)}}{{{\text{x}} - {\text{x}}^{\prime } }}\left. \right|_{{{\text{t}} = 0}} $$
(43)

Consequently, the elastic strain energy stored in the upper half of the crystal is equal to the work done by surface forces in generating a disregistry δ(x, t). Hence the strain energy due to disregistry is given by the following equation,

$${{\updelta d}}{{\rm{W}}^{\rm{E}}} = \frac{{\rm{G}}}{{2{{\uppi }}\left( {1 - {{\upnu }}} \right)}}\frac{{{\rm{d}}\delta\left( {{{\rm{x}}^\prime },{\rm{t}}} \right)}}{{{\rm{x}} - {{\rm{x}}^\prime }}}\delta \left( {{\rm{x}},{\rm{t}}} \right){\left. \right|_{{\rm{t}} = 0}}$$
(44)

Appendix B: At-rest critical shear stress: Peierls-Nabarro (PN) equation for self-stress

In this section, we explain self-stress of the dislocation based on Peierls-Nabarro model [12]. Self-stress is formed by the dislocation line curvature and it is also known as line tension [141]. In our study, the line tension for a semi-infinite straight dislocation is included in the dislocation core energy. Within the glide plane, at each point a distance \({\text{x}}^{\prime }\) from the dislocation line, disregistry δ \(\left( {\text{x}} \right)\) of the upper half of the crystal (y > 0) with respect to the lower half (y < 0) results from the continuous distribution of infinitesimal dislocations with disregistry \({\updelta }^{\prime } \left( {{\text{x}}^{\prime } } \right){\text{dx}}^{\prime }\). Strain energy at t ≤ 0 can be written as follows,

$$ {\delta W}^{{\text{E}}} = - \frac{{\text{G}}}{{2{\uppi }\left( {1 - {\upnu }} \right)}}\mathop \int \limits_{{ - {\text{L}}}}^{{\text{L}}} \mathop \int \limits_{{ - {\text{L}}}}^{{\text{L}}} {\updelta }^{\prime } \left( {\text{x,0}} \right){\updelta }^{\prime } \left( {{\text{x}}^{\prime } {,}0} \right)\ln \left( {{\text{x}} - {\text{x}}^{\prime } } \right){\text{dxdx}}^{\prime } $$
(45)

For a dislocation at rest, the total energy is contributed by two parts. The first one is, surface energy contribution from the misfit of atomic half planes across the glide plane. This theoretical measure of misfit surface energy can be obtained by cutting a perfect crystal (having no stacking fault) along the glide plane and then displacing one of the half crystals relative to the other in the tangent direction of glide plane and then re-joining to get new bonding between the adjacent atoms. This surface energy is named as generalized stacking fault energy (GSFE) [39]. Under immobile condition, restoring force is calculated as the gradient of generalized stacking fault energy, γ [39]. This restoring force has the same formal interpretations as that of PN stress [39]. Misfit energy is given by the following equation,

$$ {\text{U}}_{{{\text{SFE}}}} = \mathop \int \limits_{ - L}^{L} {\upgamma }\left( {{\updelta }\left( {\text{x,0}} \right)} \right){\text{dx}} $$
(46)

Then the restoring force is calculated as follows,

$$ {\text{F}}_{{\text{b}}} \left( {\updelta } \right) = - \nabla ({\text{U}}_{{{\text{SFE}}}} ) $$
(47)

The second part of energy contribution is from the elastic energy stored in the two elastic half-spaces as a function of disregistry. Strain energy equation for an edge dislocation at rest is given in Eq. (45). Hence, the total energy contribution is given by adding Eqs. (45) and (46) to get the following equation,

$$ \begin{aligned}{{\rm{U}}_{{\rm{Total}}}}\left( {\delta \left( {{\rm{x}},0} \right)} \right) &= \mathop \int \limits_{ - {\rm{L}}}^{\rm{L}} {{\upgamma }}\left( {\delta \left( {{\rm{x}},0} \right)} \right){\rm{dx}} \\ &\quad+ ~\frac{{\rm{G}}}{{2{{\uppi }}\left( {1 - {{\upnu }}} \right)}}\mathop \int \limits_{ - {\rm{L}}}^{\rm{L}} \mathop \int \limits_{ - {\rm{L}}}^{\rm{L}} {\delta ^\prime }\left( {{\rm{x}},0} \right){\rm{dx}}~\left\{ {\ln \left( {{\rm{x}} - {{\rm{x}}^\prime }} \right)\frac{{{\rm{d}}\delta \left( {{{\rm{x}}^\prime },0} \right)}}{{{\rm{d}}{x^\prime }}}{\rm{d}}{{\rm{x}}^\prime }} \right\}\end{aligned} $$
(48)

Upon minimization of Eq. (48), one can get the static resisting force as follows,

$${{\rm{F}}_{\rm{b}}}\left( \delta \right) = {\sigma _{{\rm{PN}}}}{\rm{b}} = \frac{{{\rm{Gb}}}}{{2{{\uppi }}\left( {1 - {{\upnu }}} \right)}}\mathop \int \limits_{ - {\rm{L}}}^{\rm{L}} \left\{ {\frac{1}{{{\rm{x}} - {{\rm{x}}^\prime }}}\frac{{{\rm{d}}\delta \left( {{{\rm{x}}^\prime },0} \right)}}{{{\rm{d}}{{\rm{x}}^\prime }}}{\rm{d}}{{\rm{x}}^\prime }} \right\}$$
(49)

where \({\upsigma }_{{{\text{PN}}}}\) represents the Peierls-Nabarro stress.

Appendix C: Derivation of inertial mass factor

Value of coefficient α, is found by equating the scaled measures (by a factor, \({\upkappa }\)) of total mass given in Eq. (28) followed by (29) and using Eq. (4), as follows,

$$\mathop \int \limits_{ - {\rm{L}}}^{\rm{L}} \mathop \int \limits_{ - \frac{{\rm{d}}}{2}}^{\frac{{\rm{d}}}{{\rm{2}}}} {{\upalpha }}{{{\uprho }}_{\rm{m}}}{\rm{dy~}}{\delta ^\prime }{\rm{dx}} = {{\upkappa }}\left[ {1 + {{\left( {\frac{{{{\rm{c}}_2}}}{{{{\rm{c}}_1}}}} \right)}^4}} \right]\frac{{{{{\uprho }}_{\rm{m}}}{{\rm{b}}^2}}}{{4{{\uppi }}}}\ln \left( {\frac{{8{{\rm{c}}_0}{{\uptau }}}}{{\rm{d}}}} \right)$$
(50)
$${{\upalpha }}{{{\uprho }}_{\rm{m}}}\mathop \int \limits_{ - {\rm{L}}}^{\rm{L}} \mathop \int \limits_{ - \frac{{\rm{d}}}{2}}^{\frac{{\rm{d}}}{2}} {\rm{dy}}~{\delta ^\prime }{\rm{dx}} = {{\upkappa }}\left[ {1 + {{\left( {\frac{{{{\rm{c}}_2}}}{{{{\rm{c}}_1}}}} \right)}^4}} \right]\frac{{{{{\uprho }}_{\rm{m}}}{{\rm{b}}^2}}}{{4{{\uppi }}}}\ln \left( {\frac{{8{{\rm{c}}_0}{{\uptau }}}}{{\rm{d}}}} \right)$$
(51)
$${{\upalpha }}{{{\uprho }}_{\rm{m}}}{\rm{d}}\mathop \int \limits_{ - {\rm{L}}}^{\rm{L}} {\delta ^\prime } = {{\upkappa }}\left[ {1 + {{\left( {\frac{{{{\rm{c}}_2}}}{{{{\rm{c}}_1}}}} \right)}^4}} \right]\frac{{{{{\uprho }}_{\rm{m}}}{{\rm{b}}^2}}}{{4{{\uppi }}}}\ln \left( {\frac{{8{{\rm{c}}_0}{{\uptau }}}}{{\rm{d}}}} \right)$$
(52)

Using Eq. (4) in Eq. (52), one can get the following equation,

$${{\upalpha }}{{{\uprho }}_{\rm{m}}}{\rm{bd}} = {{\upkappa }}\left[ {1 + {{\left( {\frac{{{{\rm{c}}_2}}}{{{{\rm{c}}_1}}}} \right)}^4}} \right]\frac{{{{{\uprho }}_{\rm{m}}}{{\rm{b}}^2}}}{{4{{\uppi }}}}\ln \left( {\frac{{8{{\rm{c}}_0}{{\uptau }}}}{{\rm{d}}}} \right)$$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M, N.B.J., Rao, C.L. & Basaran, C. A semi-infinite edge dislocation model for the proportionality limit stress of metals under high strain rate. Comput Mech 68, 545–565 (2021). https://doi.org/10.1007/s00466-020-01959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01959-2

Keywords

Navigation