Skip to main content
Log in

Elastic–plastic deformation decomposition algorithm for metal clusters at the atomic scale

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This study proposes a new elastic–plastic deformation decomposition algorithm for metal clusters to calculate micro-nanoscale elastic and plastic deformation gradients. In the macroscopic plasticity theory, the intermediate configuration is usually constructed by the dissection–unloading method. Because an atomic cluster is equivalent to a small element on a macroscopic object, our decomposition algorithm regards the unloaded configuration as the intermediate configuration for atomic clusters. This algorithm uses a new unloading method to obtain the unloaded configuration. This micro-nanoscale unloading method is constructed based on the principle of minimum potential energy and the embedded-atom method. Moreover, this method rigidly fixes atoms around dislocations during unloading. Therefore, the unloading process will not cause new plastic flow. Once the intermediate configuration is obtained, elastic and plastic deformation gradients are calculated by the interpolation method. Numerical examples of Cu nanowire stretching and bending show that the new decomposition algorithm can accurately and rapidly conduct the elastic–plastic decomposition of the total deformation. This algorithm provides a computational basis for multiscale coupling analysis of mechanical behavior of metal materials from the micro-nanoscale to the macroscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Lubliner J (2008) Plasticity theory. Dover Publications, Mineola

    MATH  Google Scholar 

  2. Khan AS, Huang S (1995) Continuum theory of plasticity. Wiley, Hoboken

    MATH  Google Scholar 

  3. Lee EH (1969) Elastic–plastic deformation at finite strains. J Appl Mech 36(1):1–6

    Article  Google Scholar 

  4. Clayton J, McDowell D (2003) A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int J Plast 19(9):1401–1444

    Article  Google Scholar 

  5. Clayton JD, Hartley CS, McDowell DL (2014) The missing term in the decomposition of finite deformation. Int J Plast 52:51–76

    Article  Google Scholar 

  6. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) On the validity of the hall-petch relationship in nanocrystalline materials. Scr Metall 23(10):1679–1683

    Article  Google Scholar 

  7. Schiøtz J, Vegge T, Di Tolla F, Jacobsen KW (1999) Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B 60(17):11971–11983

    Article  Google Scholar 

  8. Van Swygenhoven H, Caro A (1998) Plastic behavior of nanophase metals studied by molecular dynamics. Phys Rev B 58(17):11246–11251

    Article  Google Scholar 

  9. Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Competing plastic deformation mechanisms in nanophase metals. Phys Rev B 60(1):22–25

    Article  Google Scholar 

  10. Van Swygenhoven H, Caro A, Farkas D (2001) A molecular dynamics study of polycrystalline fcc metals at the nanoscale: grain boundary structure and its influence on plastic deformation. Mater Sci Eng A 309–310:440–444

    Article  Google Scholar 

  11. Van Swygenhoven H, Derlet P (2001) Grain-boundary sliding in nanocrystalline fcc metals. Phys Rev B 64(22):224105

    Article  Google Scholar 

  12. Yamakov V, Wolf D, Salazar M, Phillpot S, Gleiter H (2001) Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 49(14):2713–2722

    Article  Google Scholar 

  13. Yamakov V, Wolf D, Phillpot S, Gleiter H (2002) Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 50(20):5005–5020

    Article  Google Scholar 

  14. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat Mater 1(1):45–49

    Article  Google Scholar 

  15. Yamakov V, Wolf D, Phillpot S, Gleiter H (2003) Dislocation–dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater 51(14):4135–4147

    Article  Google Scholar 

  16. Yamakov V, Wolf D, Phillpot S, Mukherjee A, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3(1):43–47

    Article  Google Scholar 

  17. Vo NQ, Averback RS, Bellon P, Odunuga S, Caro A (2008) Quantitative description of plastic deformation in nanocrystalline Cu: dislocation glide versus grain boundary sliding. Phys Rev B 77(13):134108

    Article  Google Scholar 

  18. Nemat-Nasser S (1979) Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int J Solids Struct 15(2):155–166

    Article  Google Scholar 

  19. Stukowski A, Arsenlis A (2012) On the elastic–plastic decomposition of crystal deformation at the atomic scale. Modell Simul Mater Sci Eng 20(3):035012

    Article  Google Scholar 

  20. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag Phys Condens Matter Struct Defects Mech Prop 73(6):1529–1563

    Google Scholar 

  21. Miller RE, Tadmor EB (2002) The Quasicontinuum method: overview, applications and current directions. J Comput Aided Mater Des 9(3):203–239

    Article  Google Scholar 

  22. Rudd RE, Broughton JQ (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58(10):R5893–R5896

    Article  Google Scholar 

  23. Wagner GJ, Liu WK (2003) Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys 190(1):249–274

    Article  Google Scholar 

  24. Weinan E, Engquist B (2003) Multiscale modeling and computation. Notices AMS 50(9):1062–1070

    MathSciNet  MATH  Google Scholar 

  25. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    Article  MathSciNet  Google Scholar 

  26. Eringen AC (1974) Theory of nonlocal thermoelasticity. Int J Eng Sci 12(12):1063–1077

    Article  MathSciNet  Google Scholar 

  27. Bessa MA, Bostanabad R, Liu Z, Hu A, Apley DW, Brinson C, Chen W, Liu WK (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667

    Article  MathSciNet  Google Scholar 

  28. Liu Z, Bessa M, Liu WK (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341

    Article  MathSciNet  Google Scholar 

  29. Li H, Kafka OL, Gao J, Yu C, Nie Y, Zhang L, Tajdari M, Tang S, Guo X, Li G, Tang S, Cheng G, Liu WK (2019) Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput Mech 64(2):281–305

    Article  MathSciNet  Google Scholar 

  30. Mott PH, Argon AS, Suter UW (1992) The atomic strain tensor. J Comput Phys 101(1):140–150

    Article  MathSciNet  Google Scholar 

  31. Tian X, Cui J, Li B, Xiang M (2010) Investigations on the deformation behavior of polycrystalline Cu nanowires and some factors affecting the modulus and yield strength. Modell Simul Mater Sci Eng 18(5):55011

    Article  Google Scholar 

  32. Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B Condens Matter Mater Phys 63(22):2241061–22410616

    Article  Google Scholar 

  33. Stukowski A, Albe K (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell Simul Mater Sci Eng 18(8):085001

    Article  Google Scholar 

  34. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J Phys Chem 91(19):4950–4963

    Article  Google Scholar 

  35. Aurenhammer F, Klein R, Lee D-T (2013) Voronoi diagrams and Delaunay triangulations. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  36. Nocedal J, Wright S (2006) Numerical optimization. Springer, Berlin

    MATH  Google Scholar 

  37. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca Raton

    Book  Google Scholar 

  38. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519

    Article  Google Scholar 

  39. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China [51739007] and the State Key Laboratory of Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Cui, J. Elastic–plastic deformation decomposition algorithm for metal clusters at the atomic scale. Comput Mech 67, 567–581 (2021). https://doi.org/10.1007/s00466-020-01948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01948-5

Keywords

Navigation