Skip to main content
Log in

Mechanical and optical evaluation of alginate hydrospheres produced with different cross-linking salts for industrial application

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Alginate spheres complexed with various divalent cations and various counterions associated with calcium were characterized mechanically and optically. Zinc exhibited the most intense absorbance increase from the visible to ultraviolet wavelength range, a desirable characteristic for use in sunscreens. Among the calcium salts, only chloride and lactate exhibited the same behavior, although with a lower intensity. The values of the Young’s moduli of alginate spheres produced with zinc and lead were similar to the highest values that have been reported thus far, for cadmium and copper. Spheres produced with calcium gluconate were also among the stiffest. The mass of the beads decreased when they reacted with most of the saline solutions used, except in the case of calcium chloride and calcium lactate. Cations having high atomic numbers produced stiffer alginate spheres, due to the interaction mechanisms involved in polysaccharide reticulation. The present analyses are important for the development of new products and processes for the pharmaceutical, food, environmental, and biotechnological industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available in the Open Science Framework repository: https://osf.io/8urzp/?view_only=77780d98cc87429190adfc84bfd8f06d.

References

  1. D’Arrigo G, Di Meo C, Geissler E, Coviello T, Alhaique F, Matricardi P (2012) Hyaluronic acid methacrylate derivatives and calcium alginate interpenetrated hydrogel networks for biomedical applications: physico-chemical characterization and protein release. Colloid Polym Sci 290:1575–1582. https://doi.org/10.1007/s00396-012-2735-6

    Article  CAS  Google Scholar 

  2. Patel N, Lalwani D, Gollmer S, Injeti E, Sari Y, Nesamony J (2016) Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Progress Biomater 5:117–133. https://doi.org/10.1007/s40204-016-0051-9

    Article  CAS  Google Scholar 

  3. Cendon FV, Jorge RMMJ, Weinschutz R, Mathias AL (2017) Effect of matrix composition, sphere size and hormone concentration on diffusion coefficient of insulin for controlled gastrointestinal delivery for diabetes treatment. J Microencapsul 35(1):13–25. https://doi.org/10.1080/02652048.2017.1409820

    Article  CAS  Google Scholar 

  4. Guyton AC, Hall JE (2000) Textbook of medical physiology. Elsevier, Philadelphia

    Google Scholar 

  5. Lin Y, Liang H, Chung C, Chen M, Sung H (2004) Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26:2105–2113. https://doi.org/10.1016/j.biomaterials.2004.06.011

    Article  CAS  Google Scholar 

  6. Déat-Lainé E, Hoffart V, Cardot JM, Subirade M, Beyssac E (2012) Development and in vitro characterization of insulin loaded whey protein and alginate microparticles. Int J Pharm 439:136–144. https://doi.org/10.1016/j.ijpharm.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  7. Wichchukit S, Oztop MH, Mccarthy MJ, Mccarthy KL (2013) Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocoll 33(1):66–73. https://doi.org/10.1016/j.foodhyd.2013.02.013

    Article  CAS  Google Scholar 

  8. Durante M, Lenucci MS, Laddomada B, Mita G, Caretto S (2012) Effects of sodium alginate bead encapsulation on the storage stability of durum wheat (Triticum durum desf.) bran oil extracted by supercritical CO2. J Agric Food Chem 60:10689–10695. https://doi.org/10.1021/jf303162m

    Article  CAS  PubMed  Google Scholar 

  9. Hu B, Liu X, Zhang C, Zeng X (2017) Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J Food Drug Anal 25:3–15. https://doi.org/10.1016/j.jfda.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  10. Wang F, Lu X, Li X (2016) Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J Hazard Mater 308:75–83. https://doi.org/10.1016/j.jhazmat.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  11. Lamelas C, Avaltroni F, Benedetti M, Wilkinson KJ, Slaveykova VL (2005) Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation. Biomacromolecules 6:2756–2764. https://doi.org/10.1021/bm050252y

    Article  CAS  PubMed  Google Scholar 

  12. Shang Y, Yu X, Romero-González ME (2015) Screening of algae material as a filter for heavy metals in drinking water. Algal Res 12:258–261. https://doi.org/10.1016/j.algal.2015.09.003

    Article  Google Scholar 

  13. Papageorgiou SK, Katsaros FK, Kouvelos EP, Kanellopoulos NK (2009) Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J Hazard Mater 162:1347–1354. https://doi.org/10.1016/j.jhazmat.2008.06.022

    Article  CAS  PubMed  Google Scholar 

  14. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479. https://doi.org/10.1016/S0043-1354(98)00475-8

    Article  CAS  Google Scholar 

  15. Chang J, Huang J (1998) Selective adsorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomass. Biotechnol Prog 14:735–741. https://doi.org/10.1021/bp980070y

    Article  CAS  PubMed  Google Scholar 

  16. Zohar-Perez C, Chernin L, Chet I, Nussinovitch A (2003) Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiat Res 160(2):198–204. https://doi.org/10.1667/RR3027

    Article  CAS  PubMed  Google Scholar 

  17. Etchepare MA, Menezes MFSC, Barreto AR, Cavalheiro CP, Menezes CR (2015) Microencapsulation of probiotics by extrusion method associated with electrostatic interactions. Ciência Natura 35:75–86. https://doi.org/10.5902/2179-60X19718

    Article  Google Scholar 

  18. Doherty SB, Gee VL, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A (2011) Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll 25(6):1604–1617. https://doi.org/10.1016/j.foodhyd.2010.12.012

    Article  CAS  Google Scholar 

  19. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langton M, Aström A, Hermansson A (1997) Influence of microstructure on the sensory quality of whey protein gels. Food Hydrocoll 11(2):217–230. https://doi.org/10.1016/s0268-005x(97)80028-8

    Article  CAS  Google Scholar 

  21. Heath MR, Prinz JF (1999) Food texture: measurement and perception-oral processing of foods and the sensory evaluation of texture. Aspen Publishers, Gaithersburg

    Google Scholar 

  22. Ishihara S, Nakao S, Nakauma M, Funami T, Hori K, Ono T, Kohyama K, Nishinari K (2013) Compression test of food gels on artificial tongue and its comparison with human test. J Texture Stud 44:104–114. https://doi.org/10.1111/jtxs.12002

    Article  Google Scholar 

  23. Lancy ED, Tuovinen OH (1984) Ferrous ion oxidation by Thiobacillus ferrooxidans immobilized in calcium alginate. Appl Microbiol Biotechnol 20:94–99. https://doi.org/10.1007/BF00252584

    Article  CAS  Google Scholar 

  24. Cruz A, Couto L, Esplugas S, Sans C (2017) Study of the contribution of homogeneous catalysis on heterogeneous Fe(III)/alginate mediated photo-Fenton process. Chem Eng J 318:272–280. https://doi.org/10.1016/j.cej.2016.09.014

    Article  CAS  Google Scholar 

  25. Al-Mayah AMR (2012) Simulation of enzyme catalysis in calcium alginate beads. Enzyme Res 2012:1–13. https://doi.org/10.1155/2012/459190

    Article  CAS  Google Scholar 

  26. Vaija J, Linko Y, Linko P (1982) Citric acid production with alginate bead entrapped Aspergillus niger ATCC 9142. Appl Biochem Biotechnol 7:51–54. https://doi.org/10.1007/BF02798621

    Article  CAS  PubMed  Google Scholar 

  27. Loh QL, Wong YY, Choong C (2012) Combinatorial effect of different alginate compositions, polycations, and gelling ions on microcapsule properties. Colloid Polym Sci 290:619–629. https://doi.org/10.1007/s00396-011-2568-8

    Article  CAS  Google Scholar 

  28. Torres ML, Fernandez JM, Dellatorre FG, Cortizo AM, Oberti TG (2019) Purification of alginate improves its biocompatibility and eliminates cytotoxicity in matrix for bone tissue engineering. Algal Res 40:101499. https://doi.org/10.1016/j.algal.2019.101499

    Article  Google Scholar 

  29. Silva R, Singh R, Sarker B, Papageorgiou DG, Juhasz-Bortuzzo JA, Roether JA, Cicha I, Kaschta J, Schubert DW, Chrissafis K, Detsch R, Boccaccini AR (2018) Hydrogel matrices based on elastin and alginate for tissue engineering applications. Int J Biol Macromol 114:614–625. https://doi.org/10.1016/j.ijbiomac.2018.03.091

    Article  CAS  PubMed  Google Scholar 

  30. Shukla AK, Behera SK, Pakhre A, Chaudhari SK (2018) Micronutrients in soils, plants, animals and humans. Indian J Fertilisers 14(4):30–54

    Google Scholar 

  31. Anchordoquy JM, Anchordoquy JP, Galarza EM, Farnetano NA, Giuliodori MJ, Nikoloff N, Fazzio NE, Furnus CC (2019) Parenteral zinc supplementation increases pregnancy rates in beef cows. Biol Trace Elem Res 192:1–8. https://doi.org/10.1007/s12011-019-1651-8

    Article  CAS  Google Scholar 

  32. Dalponte I, Souza BC, Mathias AL, Jorge RMM (2019) Formulation and optimization of a novel TiO2/calcium alginate floating photocatalyst. Int J Biol Macromol 137:992–1001. https://doi.org/10.1016/j.ijbiomac.2019.07.020

    Article  CAS  PubMed  Google Scholar 

  33. He R, Hocking RK, Tsuzuki T (2012) Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mater Chem Phys 132:1035–1040. https://doi.org/10.1016/j.matchemphys.2011.12.061

    Article  CAS  Google Scholar 

  34. Ammala A, Hill AJ, Meakin P, Pas SJ, Turney TW (2002) Degradation studies of poly olefins incorporating transparent nanoparticulate zinc oxide UV stabilizers. J Nanopart Res 4:167–174. https://doi.org/10.1667/RR3027

    Article  CAS  Google Scholar 

  35. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112. https://doi.org/10.2147/NSA.S19419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chan E, Lim T, Voo W, Pogaku R, Tey BT, Zhan Z (2011) Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology 9:228–234. https://doi.org/10.1016/j.partic.2010.12.002

    Article  CAS  Google Scholar 

  37. Ouwerx C, Velings N, Mestdagh MM, Axelos MAV (1998) Physyco-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym Gels Netw 6:393–408. https://doi.org/10.1016/S0966-7822(98)00035-5

    Article  CAS  Google Scholar 

  38. Kaygusuz H, Evingür GA, Pekcan Ö, Von Klitzing R, Erim FB (2016) Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. Int J Biol Macromol 92:220–224. https://doi.org/10.1016/j.ijbiomac.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  39. Lee P, Rogers MA (2012) Effect of calcium source and exposure time on basic caviar spherification using sodium alginate. Int J Gastronomy Food Sci 1:96–100. https://doi.org/10.1016/j.ijgfs.2013.06.003

    Article  Google Scholar 

  40. Kikuchi A, Kawabuchi M, Sugihara M, Sakurai Y, Okano T (1997) Pulsed dextran release from calcium-alginate gel beads. J Control Release 47:21–29. https://doi.org/10.1016/S0168-3659(96)01612-4

    Article  CAS  Google Scholar 

  41. Micheli M, Pellegrino S, Piccioni E, Standardi A (2002) Effects of double encapsulation and coating on synthetic seed conversion in M.26 apple rootstock. J Microencapsul 19(3):347–356. https://doi.org/10.1080/02652040110105337

    Article  CAS  PubMed  Google Scholar 

  42. Chandramouli V, Kailasapathy K, Pairis P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56:27–35. https://doi.org/10.1016/j.mimet.2003.09.002

    Article  CAS  PubMed  Google Scholar 

  43. Malabadi RB, Staden J (2005) Storability and germination of sodium alginate encapsulated somatic embryos derived from the vegetative shoot apices of mature Pinus patula trees. Plant Cell Tissue Organ Cult 82:259–265. https://doi.org/10.1007/s11240-005-1313-8

    Article  CAS  Google Scholar 

  44. Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S (2002) Copper-induced vascular endothelial growth factor expression and wound healing. Am J Phys 282(5):H1821–H1827. https://doi.org/10.1152/ajpheart.01015.2001

    Article  CAS  Google Scholar 

  45. Cavallaro G, Gianguzza A, Lazzara G, Millioto S, Piazzese D (2013) Alginate gel beads filled with halloysite nanotubes. Appl Clay Sci 72:132–137. https://doi.org/10.1016/j.clay.2012.12.001

    Article  CAS  Google Scholar 

  46. Greenwald I (1938) The dissociation of some calcium salts. J Biol Chem 124:437–452

    Article  CAS  Google Scholar 

  47. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923. https://doi.org/10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  48. Hassan RM, Makhlouf MT, El-Shatoury SA (1992) Alginate polyelecrtolyte ionotropic gels. Part IX: diffusion control effects on the relaxation time of sol-gel transformation for transition-divalent metal alginate ionotropic gel complexes. Colloid Polym Sci 270:1237–1242. https://doi.org/10.1007/BF01095065

    Article  CAS  Google Scholar 

  49. Mørch YA, Donati I, Strand BL, Skjåk-Bræk G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480. https://doi.org/10.1021/bm060010d

    Article  CAS  PubMed  Google Scholar 

  50. Wang CX, Cowen C, Zhang Z, Thomas CR (2005) High-speed compression of single alginate microspheres. Chem Eng Sci 60:6649–6657. https://doi.org/10.1016/j.ces.2005.05.052

    Article  CAS  Google Scholar 

  51. O’neil MJ (2001) The Merck index-an encyclopedia of chemicals, drugs, and biologicals. Merck and Co., Whitehouse Station

    Google Scholar 

  52. Figueira FC, Hotza D, Bernardin AM (2014) Obtaining grits by gelation of ceramic suspensions. Cerâmica 60(356):457–464. https://doi.org/10.1590/S0366-69132014000400002

    Article  Google Scholar 

  53. Chan E, Lee B, Ravindra P, Poncelet D (2009) Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J Colloid Interface Sci 338:63–72. https://doi.org/10.1016/j.jcis.2009.05.027

    Article  CAS  PubMed  Google Scholar 

  54. Chen L, Opara UL (2013) Texture measurement approaches in fresh and processed foods—a review. Food Res Int 51:823–835. https://doi.org/10.1016/j.foodres.2013.01.046

    Article  Google Scholar 

  55. Minghou J, Yujun W, Zuhong X, Yuca G (1984) Studies on the M:G ratios in alginate. Hydrobiologia 116:554–556. https://doi.org/10.1007/BF00027745

    Article  Google Scholar 

  56. Perry RH, Green DW, Maloney JO (1997) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  57. Lide DR (2005) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  58. Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Funami T, Williams PA, Li L (2007) Multiple steps and critical behaviours of the binding of calcium to alginate. J Phys Chem 111:2456–2462. https://doi.org/10.1021/jp0689870

    Article  CAS  Google Scholar 

  59. Haug A, Smidsrød O (1965) The effect of divalent metals on the properties of alginate solutions. Acta Chem Scand 19:341–351. https://doi.org/10.3891/acta.chem.scand.19-0341

    Article  CAS  Google Scholar 

  60. Fatin-Rouge N, Dupont A, Vidonne A, Dejeu J (2006) Removal of some divalent cations from water by membrane-filtration assisted with alginate. Water Res 40:1303–1309. https://doi.org/10.1016/j.watres.2006.01.026

    Article  CAS  PubMed  Google Scholar 

  61. Khosravi AA, Kundu M, Jatwa L, Deshpande SK, Bhagwat UA, Sastry M, Kulkarni SK (1998) Green luminescence from copper doped zinc sulphide quantum particles. Appl Phys Lett 67:2702–2704. https://doi.org/10.1063/1.114298

    Article  Google Scholar 

  62. Zhuang X, Su G, He Y, Zheng G (2006) Growth and characterisation of potassium cobalt nickel sulfate hexahydrate for UV light filters. Cryst Res Technol 41(10):1031–1035. https://doi.org/10.1002/crat.200610716

    Article  CAS  Google Scholar 

  63. Rahman MM, Krishna KM, Soga T, Jimbo T, Umeno M (1999) Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. J Phys Chem Solids 60(2):201–210. https://doi.org/10.1016/S0022-3697(98)00264-9

    Article  CAS  Google Scholar 

  64. Hosseini-Bandegharaei A, Karimzadeh M, Sarwghadi M, Heydarbeigi A, Hosseini SH, Nedaie M, Shoghi H (2014) Use of a selective extractant-impregnated resin for removal of Pb(II) ion from waters and wastewaters: kinetics, equilibrium and thermodynamic study. Chem Eng Res Des 92(3):581–591. https://doi.org/10.1016/j.cherd.2013.10.007

    Article  CAS  Google Scholar 

  65. Wening K, Breitkreutz J (2011) Oral drug delivery in personalized medicine: unmet needs and novel approaches. Int J Pharm 404(1–2):1–9. https://doi.org/10.1016/j.ijpharm.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  66. Belscak-Cvitanovic A, Dordevic V, Karlovic S, Pavlovic V, Komes D, Jezek D, Bugarski B, Nedovic V (2015) Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocoll 51:361–374. https://doi.org/10.1016/j.foodhyd.2015.05.039

    Article  CAS  Google Scholar 

  67. Sankalia MG, Mashru RC, Sankalia JM, Suariya VB (2006) Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimization and physicochemical characterization. Eur J Pharm Biopharm 65(2):215–232. https://doi.org/10.1016/j.ejpb.2006.07.014

    Article  CAS  PubMed  Google Scholar 

  68. Ilgin P, Ozay H, Ozay O (2019) A new dual stimuli responsive hydrogel: modeling approaches for the prediction of drug loading and release profile. Eur Polym J 113:244–253. https://doi.org/10.1016/j.eurpolymj.2019.02.003

    Article  CAS  Google Scholar 

  69. Mata YN, Blázquez ML, Ballester A, González F, Muñoz JA (2009) Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J Hazard Mater 163:555–562. https://doi.org/10.1016/j.jhazmat.2008.07.015

    Article  CAS  PubMed  Google Scholar 

  70. Sikorski P, Mo F, Skjåk-Bræk G, Stokke BT (2007) Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules 8:2098–2103. https://doi.org/10.1021/bm0701503

    Article  CAS  PubMed  Google Scholar 

  71. House JE (2008) Inorganic chemistry. Elsevier, California

    Google Scholar 

Download references

Funding

This study was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 405965/2016-8) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, grant number 1528491, Finance code – 001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation and data collection were conducted by Fernando Villaverde Cendon and Bárbara Busnardo Salomão. Fernando Villaverde Cendon analyzed the data and wrote the first draft of the manuscript. Regina Maria Matos Jorge and Alvaro Luiz Mathias reviewed and edited the manuscript. All authors read and commented on previous versions of the manuscript, and approved the final version.

Corresponding author

Correspondence to Alvaro Luiz Mathias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cendon, F.V., Salomão, B.B., Jorge, R.M.M. et al. Mechanical and optical evaluation of alginate hydrospheres produced with different cross-linking salts for industrial application. Colloid Polym Sci 299, 693–703 (2021). https://doi.org/10.1007/s00396-020-04787-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04787-1

Keywords

Navigation