Skip to main content
Log in

\( H_{\infty } \) Filtering for Discrete-Time Singular Markovian Jump Systems with Generally Uncertain Transition Rates

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is devoted to the problem of \( H_{\infty } \) filtering for a class of discrete-time singular Markovian jump systems with generally uncertain transition rates. Each transition rate of the jumping process is completely unknown or only the estimated value is known. The objective is to design a \( H_{\infty } \) filter such that the resulting filtering error system is stochastically admissible (regular, causal and stochastically stable) while satisfying a prescribed \( H_{\infty } \) performance \( \gamma \). Sufficient conditions are derived that can guarantee the filtering error system is \( H_{\infty } \) stochastically admissible. Moreover, explicit expression of the filter gains is obtained by solving a set of strict linear matrix inequalities. Finally, a numerical example is included to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. X.H. Chang, G.H. Yang, Non-fragile fuzzy H filter design for nonlinear continuous-time systems with D stability constraints. Signal Process. 92(2), 575–586 (2012)

    Article  Google Scholar 

  2. L. Dai, Singular Control Systems (Springer, Berlin, 1989)

    Book  Google Scholar 

  3. Y.C. Ding, H. Liu, J. Cheng, H filtering for a class of discrete-time singular Markovian jump systems with time-varying delays. ISA Trans. 53(4), 1054–1060 (2014)

    Article  Google Scholar 

  4. D.S. Du, H filter for discrete-time switched systems with time-varying delays. Nonlinear Anal. Hybrid Syst. 4(4), 782–790 (2010)

    Article  MathSciNet  Google Scholar 

  5. Y.F. Guo, Z.J. Wang, Stability of Markovian jump systems with generally uncertain transition rates. J. Frankl. Inst. 350(9), 2826–2836 (2013)

    Article  MathSciNet  Google Scholar 

  6. S.P. He, F. Liu, Robust finite-time estimation of Markovian jumping systems with bounded transition probabilities. Appl. Math. Comput. 222, 297–306 (2013)

    MathSciNet  MATH  Google Scholar 

  7. T.C. Jiao, J.H. Park, C.S. Zhang, Y.L. Zhao, K.F. Xin, Stability analysis of stochastic switching singular systems with jumps. J. Frankl. Inst. 356(15), 0016–0032 (2019)

    Article  MathSciNet  Google Scholar 

  8. Y.G. Kao, J. Xie, C.H. Wang, Stabilization of singular Markovian jump systems with generally uncertain transition rates. IEEE Trans. Autom. Control 59(9), 2604–2610 (2014)

    Article  MathSciNet  Google Scholar 

  9. N.K. Kwon, I.S. Park, P.G. Park, H control for singular Markovian jump systems with incomplete knowledge of transition probabilities. Appl. Math. Comput. 295, 126–135 (2017)

    MathSciNet  MATH  Google Scholar 

  10. L. Li, Z.X. Zhang, J.C. Xu, A generalized nonlinear H filter design for discrete-time Lipschitz descriptor systems. Nonlinear Anal. Real World Appl. 15, 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  11. S.H. Long, S.M. Zhong, Z.J. Liu, Stochastic admissibility for a class of singular Markovian jump systems with mode-dependent time delays. Appl. Math. Comput. 219(8), 4106–4117 (2012)

    MathSciNet  MATH  Google Scholar 

  12. S.H. Long, S.M. Zhong, Z.J. Liu, H filtering for a class of singular Markovian jump systems with time-varying delay. Signal Process. 92(11), 2759–2768 (2012)

    Article  Google Scholar 

  13. X. Lu, L. Wang, H. Wang, X. Wang, Kalman filtering for delayed singular systems with multiplicative noise. IEEE/CAA J. Autom. Sin. 3(1), 51–58 (2016)

    Article  MathSciNet  Google Scholar 

  14. Y.C. Ma, Y.F. Liu, Finite-time H sliding mode control for uncertain singular stochastic system with actuator faults and bounded transition probabilities. Nonlinear Anal. Hybrid Syst. 33, 52–75 (2019)

    Article  MathSciNet  Google Scholar 

  15. D. Marelli, M. Zamani, M.Y. Fu, B. Ninness, Distributed Kalman filter in a network of linear systems. Syst. Control Lett. 116, 71–77 (2018)

    Article  MathSciNet  Google Scholar 

  16. M. Mariton, Jump Linear Systems in Automatic Control (Marcel Dekker, New York, 1990)

    Google Scholar 

  17. B.Y. Ni, Q.H. Zhang, Stability of the Kalman filter for continuous time output error systems. Syst. Control Lett. 94, 172–180 (2016)

    Article  MathSciNet  Google Scholar 

  18. C.E. Park, N.K. Kwon, P.G. Park, Optimal H filtering for singular Markovian jump systems. Syst. Control Lett. 118, 22–28 (2018)

    Article  MathSciNet  Google Scholar 

  19. B. Sahereh, J. Aliakbar, K.S. Ali, H filtering for descriptor systems with strict LMI conditions. Automatica 80, 88–94 (2017)

    Article  MathSciNet  Google Scholar 

  20. M. Shen, J.H. Park, D. Ye, A separated approach to control of Markov jump nonlinear systems with general transition probabilities. IEEE Trans. Cybern. 46(9), 2010–2018 (2015)

    Article  Google Scholar 

  21. M. Shen, D. Ye, Improved fuzzy control design for nonlinear Markovian-jump systems with incomplete transition descriptions. Fuzzy Sets Syst. 217, 80–95 (2013)

    Article  MathSciNet  Google Scholar 

  22. X.N. Song, Z. Wang, H. Shen, F. Li, B. Chen, J.W. Lu, A unified method to energy-to-peak filter design for networked Markov switched singular systems over a finite-time interval. J. Frankl. Inst. 3549(17), 7899–7916 (2017)

    Article  MathSciNet  Google Scholar 

  23. C.E.D. Souza, Robust H filtering for a class of discrete-time Lipschitz nonlinear systems. Automatica 103, 69–80 (2019)

    Article  MathSciNet  Google Scholar 

  24. G.L. Wang, H.Y. Bo, Q.L. Zhang, H filtering for time-delayed singular Markovian jump systems with time-varying switching: a quantized method. Signal Process. 109, 14–24 (2015)

    Article  Google Scholar 

  25. J.R. Wang, H.J. Wang, A.K. Xue, R.Q. Lu, Delay-dependent H control for singular Markovian jump systems with time delay. Nonlinear Anal. Hybrid Syst. 8, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  26. Y. Wei, J. Qiu, H.R. Karimi, M. Wang, A new design H filtering for continuous-time Markovian jump systems with time-varying delay and partially accessible mode information. Signal Process. 93, 2392–2407 (2013)

    Article  Google Scholar 

  27. Z.G. Wu, J.H. Park, H.Y. Su, B. Song, J. Chu, Mixed H and passive filtering for singular systems with time delays. Signal Process. 93(7), 1705–1711 (2013)

    Article  Google Scholar 

  28. L.H. Xie, C.E.D. Souza, Robust H control for linear systems with norm-bounded time-varying uncertainty. IEEE Trans. Autom. Control 37(8), 1188–1191 (1992)

    Article  MathSciNet  Google Scholar 

  29. X.P. Xie, X.L. Zhu, D.W. Gong, Relaxed filtering designs for continuous-time nonlinear systems via novel fuzzy H filters. Signal Process. 93(5), 1251–1258 (2013)

    Article  Google Scholar 

  30. S. Xu, J. Lam, Robust Control and Filtering of Singular Systems (Springer, New York, 2006)

    MATH  Google Scholar 

  31. Q.Y. Xu, Y.J. Zhang, B.Y. Zhang, Network-based event-triggered H filtering for discrete-time singular Markovian jump systems. Signal Process. 145, 106–115 (2018)

    Article  Google Scholar 

  32. G.W. Yang, B.H. Kao, J.H. Park, Y.G. Kao, H performance for delayed singular nonlinear Markovian jump systems with unknown transition rates via adaptive control method. Nonlinear Anal. Hybrid Syst. 33, 33–51 (2019)

    Article  MathSciNet  Google Scholar 

  33. G.W. Yang, Y.G. Kao, B.P. Jiang, J.L. Yin, Delay-dependent H filtering for singular Markovian jump systems with general uncomplete transition probabilities. Appl. Math. Comput. 294, 195–215 (2017)

    MathSciNet  MATH  Google Scholar 

  34. H.L. Zhang, H.Y. Zhang, Z.M. Li, Non-fragile H filtering for continuous-time singular systems, in 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, pp. 683–687 (2017)

  35. Y.Q. Zhang, G.F. Cheng, C.X. Liu, Finite-time unbiased H filtering for discrete jump time-delay systems. Appl. Math. Model. 38(13), 3339–3349 (2014)

    Article  MathSciNet  Google Scholar 

  36. L.X. Zhang, E.K. Boukas, Mode-dependent H filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(6), 1462–1467 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61673277, 61203143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 4

Firstly, the regularity and causality of filtering error dynamics (5) are considered. Since the matrix \( \tilde{E} \) is singular, there must exist two non-singular matrices M and N such that

$$ \tilde{E} = M\left[ {\begin{array}{*{20}l} {I_{n + r} } & 0 \\ 0 & 0 \\ \end{array} } \right]N, $$

and write

$$ M^{\text{T}} P_{i} M = \left[ {\begin{array}{*{20}l} {\hat{P}_{i1} } & {\hat{P}_{i2} } \\ {\hat{P}_{i1}^{\text{T}} } & {\hat{P}_{i3} } \\ \end{array} } \right],\quad M^{ - 1} \tilde{A}N^{ - 1} = \left[ {\begin{array}{*{20}l} {A_{1i} } & {A_{2i} } \\ {A_{3i} } & {A_{4i} } \\ \end{array} } \right]. $$
(16)

It can obtain from (8) that

$$ \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} \tilde{A} - \tilde{E}^{\text{T}} P_{i} \tilde{E} < 0. $$
(17)

Pre- and post-multiplying (17) by \( N^{{ - {\text{T}}}} \) and \( N^{ - 1} \), it can get that

$$ N^{{ - {\text{T}}}} \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} \tilde{A}N^{ - 1} - N^{{ - {\text{T}}}} \tilde{E}^{\text{T}} P_{i} \tilde{E}N^{ - 1} < 0. $$
(18)

Subscribe (16) to (18), then

$$ N^{{ - {\text{T}}}} N^{\text{T}} \left[ {\begin{array}{*{20}l} {A_{1i} } & {A_{2i} } \\ {A_{3i} } & {A_{4i} } \\ \end{array} } \right]^{\text{T}} M^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} M\left[ {\begin{array}{*{20}l} {A_{1i} } & {A_{2i} } \\ {A_{3i} } & {A_{4i} } \\ \end{array} } \right]NN^{ - 1} - N^{{ - {\text{T}}}} N^{\text{T}} \left[ {\begin{array}{*{20}l} {I_{n + r} } & 0 \\ 0 & 0 \\ \end{array} } \right]^{\text{T}} M^{\text{T}} P_{i} M\left[ {\begin{array}{*{20}l} {I_{n + r} } & 0 \\ 0 & 0 \\ \end{array} } \right]NN^{ - 1} < 0, $$

which implies

$$ \left[ {\begin{array}{*{20}l} {Q_{1i} } & {Q_{2i} } \\ {Q_{2i}^{T} } & {Q_{3i} } \\ \end{array} } \right] < 0, $$
(19)

where

$$ Q_{3i} = A_{2i}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} \hat{P}_{j1} A_{2i} + A_{2i}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} \hat{P}_{j2} A_{4i} + A_{4i}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} \hat{P}_{j2}^{\text{T}} A_{2i} + A_{4i}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} \hat{P}_{j3} A_{4i} . $$

It follows from (19) that \( Q_{3i} < 0 \), note that \( \hat{P}_{j1} > 0\left( {j \in S} \right) \), which implies that \( A_{4i} \left( {i \in S} \right) \) is non-singular. Thus, by Definition 1, the inequality (8) guarantees that the filtering error system (5) is regular and causal.

Now, if the inequality (8) holds, define the following Lyapunov functional

$$ V\left( k \right) = \tilde{x}^{\text{T}} \left( k \right)\tilde{E}^{\text{T}} P_{i} \tilde{E}\tilde{x}\left( k \right). $$

Then, when \( \omega \left( k \right) = 0 \), one can get that

$$ \begin{aligned} \varepsilon \left[ {\Delta V\left( k \right)} \right] &= \varepsilon \left\{ {V(} \right.\tilde{x}\left( {k + 1} \right), r_{k + 1} )|\tilde{x}\left( k \right)\left. {r_{k} = i} \right\} - \varepsilon \left\{ {V(\tilde{x}\left( k \right)} \right.,\left. {r_{k} = i)} \right\} \\ & = \tilde{x}^{\text{T}} \left( k \right)\left\{ {\tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{s} \pi_{ij} P_{j} \tilde{A} - \tilde{E}^{\text{T}} P_{i} \tilde{E}} \right\} \tilde{x}\left( k \right). \\ \end{aligned} $$

It follows from (17) that

$$ \begin{aligned} \varepsilon \left[ {\Delta V\left( k \right)} \right] &= \tilde{x}^{\text{T}} \left( k \right)\left\{ {\tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{s} \pi_{ij} P_{j} \tilde{A} - \tilde{E}^{\text{T}} P_{i} \tilde{E}} \right\}\tilde{x}\left( k \right) \\ & < 0. \\ \end{aligned} $$

Thus, from Definition 1, the filtering error system (5) is stochastically stable.

Next, consider the following performance

$$ {\mathcal{J}} \triangleq \mathop \sum \limits_{k = 0}^{\infty } [\varepsilon (\tilde{z}\left( k \right)^{\text{T}} \tilde{z}\left( k \right)) - \gamma^{2} \omega^{\text{T}} \left( k \right)\omega \left( k \right)]. $$

Under zero-initial condition, it is easy to see

$$ \begin{aligned} {\mathcal{J}} & \le \mathop \sum \limits_{k = 0}^{\infty } [\varepsilon (\tilde{z}\left( k \right)^{\text{T}} \tilde{z}\left( k \right)) - \gamma^{2} \omega^{\text{T}} \left( k \right)\omega \left( k \right) + \varepsilon \Delta V\left( k \right)] \\ & = \mathop \sum \limits_{k = 0}^{\infty } \sigma^{\text{T}} \left( k \right)\varTheta \sigma \left( k \right), \\ \end{aligned} $$

where \( \sigma \left( k \right) = \left[ {\tilde{x}^{\text{T}} \left( {k + 1} \right)\tilde{E} ^{\text{T}} \tilde{x}^{\text{T}} \left( k \right) \omega^{\text{T}} \left( k \right)} \right]^{\text{T}} , \)

$$ \varTheta = \left[ {\begin{array}{*{20}l} 0 & 0 & 0 \\ 0 & {\tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} \tilde{A} - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{L}^{\text{T}} \tilde{L}} & 0 \\ 0 & 0 & { - \gamma^{2} I} \\ \end{array} } \right]. $$

In addition, the system (5) implies

$$ \left[ {\begin{array}{*{20}l} { - I} & {\tilde{A}} & {\tilde{B}} \\ \end{array} } \right]\sigma \left( k \right) = 0. $$

Set

$$ B = \left[ {\begin{array}{*{20}l} { - I} & {\tilde{A}} & {\tilde{B}} \\ \end{array} } \right]\quad \quad {\mathcal{X}} = \left[ {\begin{array}{*{20}l} G \\ 0 \\ F \\ \end{array} } \right], $$

Then

$$ \varTheta + {\mathcal{X}}B + B^{\text{T}} {\mathcal{X}}^{\text{T}} \, = \,\left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } & {G\tilde{A}} & { - F^{\text{T}} + G\tilde{B}} \\ * & {\tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{s} \pi_{ij} P_{j} \tilde{A} - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{L}^{\text{T}} \tilde{L}} & {\tilde{A}^{\text{T}} F^{\text{T}} } \\ * & * & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} \\ \end{array} } \right]. $$

Since

$$ \left[ {\begin{array}{*{20}l} 0 & 0 & 0 \\ 0 & {\tilde{L}^{\text{T}} \tilde{L}} & 0 \\ 0 & 0 & 0 \\ \end{array} } \right] = - \left[ {\begin{array}{*{20}l} 0 \\ {\tilde{L}^{\text{T}} } \\ 0 \\ \end{array} } \right]\left( { - I} \right)\left[ {\begin{array}{*{20}l} 0 & {\tilde{L}} & 0 \\ \end{array} } \right], $$

From the Schur complement formula, the inequality (8) is equivalent to \( \varTheta + {\mathcal{X}}B + B^{\text{T}} {\mathcal{X}}^{\text{T}} < 0 \).

By Lemma 1, \( \varTheta + {\mathcal{X}}B + B^{\text{T}} {\mathcal{X}}^{\text{T}} < 0 \) is equivalent to

$$ \sigma^{\text{T}} \left( k \right)\varTheta \sigma \left( k \right) < 0. $$

Hence, \( {\mathcal{J}} \) < 0, that is to say, \( \varepsilon \left\{ {z^{\text{T}} \left( k \right)z\left( k \right)} \right\} \le \gamma^{2} \omega^{\text{T}} \left( k \right)\omega \left( k \right) \), the \( H_{\infty } \) performance is satisfied. To sum up, the condition (8) can guarantee the filtering error system (5) is stochastically stable with a prescribed \( H_{\infty } \) performance \( \gamma \). This completes the proof of Lemma 4.

Appendix B: Proof of Theorem 1

Case I If \( i \notin U_{k}^{i} \), \( U_{k}^{i} = \left\{ {k_{1}^{i} } \right. \), \( k_{2}^{i} \),…,\( \left. {k_{m}^{i} } \right\} \). In this case, \( P_{j} - P_{i} \le 0 \) (\( j \in U_{uk}^{i} \), \( j \ne i \)) and \( \sum\nolimits_{{j \in U_{uk}^{i} ,j \ne i}} {\pi_{ij} } + \sum\nolimits_{{j \in U_{k}^{i} }} {\pi_{ij} + \pi_{ii} } = 1 \), then one has

$$ \begin{aligned} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} &= \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} P_{j} + \pi_{ii} P_{i} + \mathop \sum \limits_{{j \in U_{uk}^{i} ,j \ne i}} \pi_{ij} P_{j} = \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} P_{j} + \pi_{ii} P_{i} + \left( {1 - \pi_{ii} - \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} } \right)P_{j} \\ & \le \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} P_{j} + \pi_{ii} P_{i} + \left( {1 - \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} - \pi_{ii} } \right)P_{i} = \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} \left( {P_{j} - P_{i} } \right) + P_{i} \\ & = \mathop \sum \limits_{{j \in U_{k}^{i} }} (\hat{\pi }_{ij} + \Delta_{ij} )\left( {P_{j} - P_{i} } \right) + P_{i} = \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right) + \mathop \sum \limits_{{j \in U_{k}^{i} }} \Delta_{ij} \left( {P_{j} - P_{i} } \right) + P_{i} . \\ \end{aligned} $$

It follows from Lemma 2 that

$$ \begin{aligned} & \mathop \sum \limits_{{j \in U_{k}^{i} }} \Delta_{ij} \left( {P_{j} - P_{i} } \right) = \mathop \sum \limits_{{j \in U_{k}^{i} }} \left[ {\frac{1}{2}\Delta_{ij} \left( {P_{j} - P_{i} } \right) + \frac{1}{2}\Delta_{ij} \left( {P_{j} - P_{i} } \right)} \right] \\ & \quad \le \mathop \sum \limits_{{j \in U_{k}^{i} }} \left[ {\frac{{\delta_{ij}^{2} }}{4}T_{ij} + \left( {P_{j} - P_{i} } \right)^{\text{T}} T_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)} \right]. \\ \end{aligned} $$

Thus

$$ \begin{aligned} & \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} \le \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right) + \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} + \mathop \sum \limits_{{j \in U_{k}^{i} }} \left( {P_{j} - P_{i} } \right)^{\text{T}} T_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right) + P_{i} , \\ & \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} \tilde{A} \le \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right)\tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} \tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \left( {P_{j} - P_{i} } \right)^{\text{T}} T_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)\tilde{A} + \tilde{A}^{\text{T}} P_{i} \tilde{A}. \\ \end{aligned} $$
(20)

By Lemma 4, the following is immediate

$$ \begin{aligned} & \theta \le \beta_{1} = \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } & {G\tilde{A}} & { - F^{\text{T}} + G\tilde{B}} & 0 \\ * & {\theta_{1} + \mathop \sum \limits_{{j \in U_{k}^{i} }} \tilde{A}^{\text{T}} \left( {P_{j} - P_{i} } \right)^{\text{T}} T_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)\tilde{A}} & {\tilde{A}^{\text{T}} F^{\text{T}} } & {\tilde{L}^{\text{T}} } \\ * & * & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} & 0 \\ * & * & * & { - I} \\ \end{array} } \right], \\ & \theta_{1} = - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right)\tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} \tilde{A} + \tilde{A}^{\text{T}} P_{i} \tilde{A}, \\ & \beta_{1} = \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } & {G\tilde{A}} & { - F^{\text{T}} + G\tilde{B}} & 0 \\ * & {\theta_{1} } & {\tilde{A}^{\text{T}} F^{\text{T}} } & {\tilde{L}^{\text{T}} } \\ * & * & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} & 0 \\ * & * & * & { - I} \\ \end{array} } \right] \\ & \quad - \left[ {\begin{array}{*{20}l} 0 & \cdots & 0 \\ {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } & \cdots & {\tilde{A}^{\text{T}} \left( {P_{{k_{m}^{i} }} - P_{i} } \right)^{\text{T}} } \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \end{array} } \right] \,\, \left[ {\begin{array}{*{20}l} { - T_{{ik_{1}^{i} }}^{ - 1} } & 0 & \cdots & 0 \\ 0 & { - T_{{ik_{2}^{i} }}^{ - 1} } & \cdots & 0 \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & { - T_{{ik_{m}^{i} }}^{ - 1} } \\ \end{array} } \right]\,\,\,\left[ {\begin{array}{*{20}l} 0 & \cdots & 0 \\ {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } & \cdots & {\tilde{A}^{\text{T}} \left( {P_{{k_{m}^{i} }} - P_{i} } \right)^{\text{T}} } \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \end{array} } \right]^{\text{T}} . \\ \end{aligned} $$
(21)

Using Schur complement formula, the condition (9) is equal to \( \beta_{1} < 0 \). Then, it follows from (21) that \( \theta \le \beta_{1} \) < 0. Thus, according to Lemma 4, the filtering error system (5) with GUTRs is stochastically admissible with a prescribed \( H_{\infty } \) performance index \( \gamma \). Thus, the proof of Case I is completed.

Case II If \( i \in U_{k}^{i} \), \( U_{uk}^{i} \ne \emptyset \) and \( U_{k}^{i} = \left\{ {k_{1}^{i} } \right. \), \( k_{2}^{i} \),…,\( \left. {k_{m}^{i} } \right\} \). There must be an \( l \in U_{uk}^{i} \) for \( \forall j \in U_{uk}^{i} \), \( P_{l} \ge P_{j} \). Let

$$ \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} = \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} P_{j} + \mathop \sum \limits_{{j \in U_{uk}^{i} }} \pi_{ij} P_{j} . $$

Since \( \sum\nolimits_{j = 1}^{s} {\pi_{ij} } = 1 \), then \( \sum\nolimits_{{j \in U_{uk}^{i} }} {\pi_{ij} } = 1 - \sum\nolimits_{{j \in U_{k}^{i} }} {\pi_{ij} } \). Similar to Case I, one can derive that

$$ \begin{aligned} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} & \le \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} P_{j} + \left( {1 - \mathop \sum \limits_{{j \in U_{uk}^{i} }} \pi_{ij} } \right)P_{l} = \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} P_{j} - \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} P_{l} + P_{l} \\ & = \mathop \sum \limits_{{j \in U_{k}^{i} }} \pi_{ij} \left( {P_{j} - P_{l} } \right) + P_{l} = \mathop \sum \limits_{{j \in U_{k}^{i} }} (\hat{\pi }_{ij} + \Delta_{ij} )\left( {P_{j} - P_{l} } \right) + P_{l} \\ & = \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{l} } \right) + \mathop \sum \limits_{{j \in U_{k}^{i} }} \Delta_{ij} \left( {P_{j} - P_{l} } \right) + P_{l} \\ & \le \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{l} } \right) + \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}V_{ijl} + \mathop \sum \limits_{{j \in U_{k}^{i} }} \left( {P_{j} - P_{l} } \right)^{\text{T}} V_{ijl}^{ - 1} \left( {P_{j} - P_{l} } \right) + P_{l} . \\ \end{aligned} $$

Thus

$$ \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} \tilde{A} \le \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{l} } \right)\tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}V_{ijl} \tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \left( {P_{j} - P_{l} } \right)^{\text{T}} V_{ijl}^{ - 1} \left( {P_{j} - P_{l} } \right)\tilde{A} + \tilde{A}^{\text{T}} P_{l} \tilde{A}. $$
(22)

It follows from Lemma 4 that

$$ \begin{aligned} & \theta \le \beta_{2} = \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } & {G\tilde{A}} & { - F^{\text{T}} + G\tilde{B}} & 0 \\ * & {\theta_{2} + \mathop \sum \limits_{{j \in U_{k}^{i} }} \tilde{A}^{\text{T}} \left( {P_{j} - P_{i} } \right)^{\text{T}} V_{ijl}^{ - 1} \left( {P_{j} - P_{i} } \right)\tilde{A}} & {\tilde{A}^{\text{T}} F^{\text{T}} } & {\tilde{L}^{\text{T}} } \\ * & * & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} & 0 \\ * & * & * & { - I} \\ \end{array} } \right], \\ & \theta_{2} = - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{l} } \right)\tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}V_{ijl} \tilde{A} + \tilde{A}^{\text{T}} P_{l} \tilde{A}. \\ \end{aligned} $$
(23)

Similar to Case I, the condition (10) is equal to \( \beta_{2} < 0 \), and \( \theta \le \beta_{2} \) < 0 holds. Hence, the condition (8) in Lemma 4 is satisfied. Thus, the proof of Case II is completed.

Case III If \( i \in U_{k}^{i} \), \( U_{uk}^{i} = \emptyset \), similar to Case I and Case II, one can get that

$$ \begin{aligned} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} &= \mathop \sum \limits_{j = 1,j \ne i}^{S} \pi_{ij} P_{j} + \pi_{ii} P_{i} = \mathop \sum \limits_{j = 1,j \ne i}^{S} \pi_{ij} (P_{j} - P_{i} ) + P_{i} = \mathop \sum \limits_{j = 1,j \ne i}^{S} (\hat{\pi }_{ij} + \Delta_{ij} )(P_{j} - P_{i} ) + P_{i} \\ & \le \mathop \sum \limits_{j = 1,j \ne i}^{S} \hat{\pi }_{ij} (P_{j} - P_{i} ) + \mathop \sum \limits_{j = 1,j \ne i}^{S} \frac{{\delta_{ij}^{2} }}{4}R_{ij} + \mathop \sum \limits_{j = 1,j \ne i}^{S} \left( {P_{j} - P_{i} } \right)^{\text{T}} R_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right) + P_{i} , \\ & \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1}^{S} \pi_{ij} P_{j} \tilde{A} \le \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1,j \ne i}^{S} \hat{\pi }_{ij} (P_{j} - P_{i} )\tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1,j \ne i}^{S} \frac{{\delta_{ij}^{2} }}{4}R_{ij} \tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1,j \ne i}^{S} \left( {P_{j} - P_{i} } \right)^{\text{T}} R_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)\tilde{A} + \tilde{A}^{\text{T}} P_{i} \tilde{A}. \\ \end{aligned} $$
(24)

From Lemma 4

$$ \begin{aligned} & \theta \le \beta_{3} = \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } & {G\tilde{A}} & { - F^{T} + G\tilde{B}} & 0 \\ * & {\theta_{3} + \mathop \sum \limits_{j = 1,j \ne i}^{s} \tilde{A}^{\text{T}} \left( {P_{j} - P_{i} } \right)^{\text{T}} R_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)\tilde{A}} & {\tilde{A}^{\text{T}} F^{\text{T}} } & {\tilde{L}^{\text{T}} } \\ * & * & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} & 0 \\ * & * & * & { - I} \\ \end{array} } \right], \\ & \theta_{3} = - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1,j \ne i}^{s} \hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right)\tilde{A} + \tilde{A}^{\text{T}} \mathop \sum \limits_{j = 1,j \ne i}^{s} \frac{{\delta_{ij}^{2} }}{4}R_{ij} \tilde{A} + \tilde{A}^{\text{T}} P_{i} \tilde{A}. \\ \end{aligned} $$
(25)

Similar to Case I and Case II, the condition (11) is equal to \( \beta_{3} < 0 \), and then \( \theta \le \beta_{3} < 0 \) holds. Hence, the condition (8) in Lemma 4 is satisfied. Thus, the proof of Case III is completed.

In conclusion, it completes the proof of Theorem 1.

Appendix C: Proof of Theorem 2

Choose the structure of \( G \), \( F \) and \( P_{i} \) in (8) as follows:

$$ G = \left[ {\begin{array}{*{20}l} {G_{11} } & {G_{22} } \\ {G_{21} } & {G_{22} } \\ \end{array} } \right],\quad F = \left[ {\begin{array}{*{20}l} {F_{11} } & {G_{22} } \\ {F_{21} } & {G_{22} } \\ \end{array} } \right],\quad P_{i} = \left[ {\begin{array}{*{20}l} {P_{i1} } & 0 \\ 0 & {P_{i2} } \\ \end{array} } \right], $$
(26)

where \( P_{i2} = \alpha_{i} G_{22} \left( {i \in U_{k}^{i} } \right) \).

Case I From the formulas (6), (15) and (26), one has

$$ \begin{aligned} & - G - G^{\text{T}} = \left[ {\begin{array}{*{20}l} { - G_{11} - G_{11}^{\text{T}} } & { - G_{22} - G_{21}^{\text{T}} } \\ * & { - G_{22} - G_{22}^{\text{T}} } \\ \end{array} } \right],\quad - \tilde{F} + G\tilde{B} = \left[ {\begin{array}{*{20}l} { - F_{11}^{\text{T}} + G_{11} B_{i} + b_{\mathrm{fi}} D_{i} } & { - F_{21}^{\text{T}} } \\ { - G_{22}^{\text{T}} + G_{21} B_{i} + b_{\mathrm{fi}} D_{i} } & { - G_{22}^{\text{T}} } \\ \end{array} } \right], \\ & G\tilde{A} = \left[ {\begin{array}{*{20}l} {G_{11} A_{i} + b_{\mathrm{fi}} C_{i} } & {a_{\mathrm{fi}} } \\ {G_{21} A_{i} + b_{\mathrm{fi}} C_{i} } & {a_{\mathrm{fi}} } \\ \end{array} } \right],\quad \tilde{L}^{\text{T}} = \left[ {\begin{array}{*{20}l} {L_{i}^{\text{T}} } \\ { - l_{\mathrm{fi}}^{\text{T}} } \\ \end{array} } \right],\quad \tilde{A}^{\text{T}} F^{\text{T}} = \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} F_{11}^{\text{T}} + C_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} } & {A_{i}^{\text{T}} F_{21}^{\text{T}} + C_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} } \\ {a_{\mathrm{fi}}^{\text{T}} } & {a_{\mathrm{fi}}^{\text{T}} } \\ \end{array} } \right], \\ & \tilde{A}^{\text{T}} G^{\text{T}} = \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} G_{11}^{\text{T}} + C_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} } & {A_{i}^{\text{T}} G_{21}^{\text{T}} + C_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} } \\ {a_{\mathrm{fi}}^{\text{T}} } & {a_{\mathrm{fi}}^{\text{T}} } \\ \end{array} } \right],\quad T_{ij} = \left[ {\begin{array}{*{20}l} {T_{ij1} } & {T_{ij2} } \\ * & {T_{ij3} } \\ \end{array} } \right], \\ & \tilde{A}^{\text{T}} \left( {P_{k} - P_{i} } \right)^{\text{T}} = \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} \left( {P_{k1} - P_{i1} } \right)^{\text{T}} } & {\left( {\alpha_{k} - \alpha_{i} } \right)C_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} } \\ 0 & {\left( {\alpha_{k} - \alpha_{i} } \right)a_{\mathrm{fi}}^{\text{T}} } \\ \end{array} } \right],(k \in U_{k}^{i} )\quad \tilde{A}^{\text{T}} P_{i}^{\text{T}} = \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} P_{i1}^{\text{T}} } & {\alpha_{i} C_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} } \\ 0 & {\alpha_{i} a_{\mathrm{fi}}^{\text{T}} } \\ \end{array} } \right], \\ & \tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I = \left[ {\begin{array}{*{20}l} {B_{i}^{\text{T}} F_{11}^{\text{T}} + D_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} + F_{11} B_{i} + b_{\mathrm{fi}} D_{i} - \gamma^{2} I} \hfill & {B_{i}^{\text{T}} F_{21}^{\text{T}} + D_{i}^{\text{T}} b_{\mathrm{fi}}^{\text{T}} } \hfill \\ * \hfill & { - \gamma^{2} I} \hfill \\ \end{array} } \right], \\ & \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} - G - G^{\text{T}} = \left[ {\begin{array}{*{20}l} {\mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij1} - G_{11} - G_{11}^{\text{T}} } \hfill & {\mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij2} - G_{22} - G_{21}^{\text{T}} } \hfill \\ * \hfill & {\mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij3} - G_{22} - G_{22}^{\text{T}} } \hfill \\ \end{array} } \right]. \\ \end{aligned} $$

So, the inequality (12) can be rewritten as

$$ \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } \hfill & {G\tilde{A}} \hfill & { - \tilde{F} + G\tilde{B}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & {\varOmega_{22} } \hfill & {\tilde{A}^{\text{T}} F^{\text{T}} } \hfill & {\tilde{L}^{\text{T}} } \hfill & {\tilde{A}^{\text{T}} G^{\text{T}} } \hfill & {\tilde{A}^{\text{T}} P^{\text{T}} } \hfill & {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } \hfill & \ldots \hfill & {\tilde{A}^{\text{T}} \left( {P_{{k_{m}^{i} }} - P_{i} } \right)^{\text{T}} } \hfill \\ * \hfill & * \hfill & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & { - I} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & {\theta^{\prime } } \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & { - P_{i} } \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & { - T_{{ik_{1}^{i} }} } \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & \ddots \hfill & \vdots \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & { - T_{{ik_{1}^{i} }} } \hfill \\ \end{array} } \right] < 0, $$
(27)

where \( \theta^{\prime } = \sum\nolimits_{{j \in U_{k}^{i} }} {\frac{{\delta_{ij}^{2} }}{4}T_{ij} - G - G^{\text{T}} } \).

Substituting (6) and (26) into \( \tilde{A}^{\text{T}} \left( {P_{j} - P_{i} } \right)\tilde{A} \) yields

$$ \begin{aligned} & \tilde{A}^{\text{T}} \left( {P_{j} - P_{i} } \right)\tilde{A} = \left[ {\begin{array}{*{20}l} {A_{i} } & 0 \\ {B_{\mathrm{fi}} C_{i} } & {A_{\mathrm{fi}} } \\ \end{array} } \right]^{\text{T}} \left[ {\begin{array}{*{20}l} {P_{j1} - P_{i1} } & 0 \\ 0 & {P_{j2} - P_{i2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} {A_{i} } & 0 \\ {B_{\mathrm{fi}} C_{i} } & {A_{\mathrm{fi}} } \\ \end{array} } \right] \\ & = \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} (P_{j1} - P_{i1} )A_{i} + C_{i}^{\text{T}} B_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )B_{\mathrm{fi}} C_{i} } \hfill & {C_{i}^{\text{T}} B_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )A_{\mathrm{fi}} } \hfill \\ {A_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )B_{\mathrm{fi}} C_{i} } \hfill & {A_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )A_{\mathrm{fi}} } \hfill \\ \end{array} } \right] \\ & = \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} (P_{j1} - P_{i1} )A_{i} } & 0 \\ 0 & 0 \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} {C_{i}^{\text{T}} B_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )B_{\mathrm{fi}} C_{i} } & {C_{i}^{\text{T}} B_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )A_{\mathrm{fi}} } \\ {A_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )B_{\mathrm{fi}} C_{i} } & {A_{\mathrm{fi}}^{\text{T}} (P_{j2} - P_{i2} )A_{\mathrm{fi}} } \\ \end{array} } \right] \\ & = \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} (P_{j1} - P_{i1} )A_{i} } & 0 \\ 0 & 0 \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} {C_{i}^{\text{T}} B_{\mathrm{fi}}^{\text{T}} } \\ {A_{\mathrm{fi}}^{\text{T}} } \\ \end{array} } \right](P_{j2} - P_{i2} )\left[ {\begin{array}{*{20}l} {B_{\mathrm{fi}} C_{i} } & {A_{\mathrm{fi}} } \\ \end{array} } \right]. \\ \end{aligned} $$

Since \( P_{j} - P_{i} \le 0 \), then \( (P_{j2} - P_{i2} ) \le 0 \), which implies \( \left[ {\begin{array}{*{20}l} {C_{i}^{\text{T}} B_{\mathrm{fi}}^{\text{T}} } \\ {A_{\mathrm{fi}}^{\text{T}} } \\ \end{array} } \right](P_{j2} - P_{i2} )\left[ {\begin{array}{*{20}l} {B_{\mathrm{fi}} C_{i} } & {A_{\mathrm{fi}} } \\ \end{array} } \right] \le 0 \), so

$$ \tilde{A}^{\text{T}} \left( {P_{j} - P_{i} } \right)\tilde{A} \le \left[ {\begin{array}{*{20}l} {A_{i}^{\text{T}} (P_{j1} - P_{i1} )A_{i} } & 0 \\ 0 & 0 \\ \end{array} } \right]. $$
(28)

In addition,

$$ - \tilde{E}^{\text{T}} P_{i} \tilde{E} = - \left[ {\begin{array}{*{20}l} {E^{\text{T}} } & 0 \\ 0 & I \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} {P_{i1} } & 0 \\ 0 & {P_{i2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} E & 0 \\ 0 & I \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} { - E^{\text{T}} P_{i1} E} & 0 \\ 0 & { - P_{i2} } \\ \end{array} } \right]. $$
(29)

It can be obtained from (28) and (29) that

$$ - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right)\tilde{A} \le \left[ {\begin{array}{*{20}l} { - E^{\text{T}} P_{i1} E + A_{i}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \hat{\pi }_{ij} \left( {P_{j1} - P_{i1} } \right)A_{i} } & 0 \\ 0 & { - P_{i2} } \\ \end{array} } \right] = \varOmega_{22} . $$
(30)

From Lemma 3, one can get that

$$ - G\left( {\mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} } \right)^{ - 1} G^{\text{T}} \le \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} - G - G^{\text{T}} . $$
(31)

It follows from (30), (31) that

$$ \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } \hfill & {G\tilde{A}} \hfill & { - \tilde{F} + G\tilde{B}} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & {\theta^{\prime \prime } } \hfill & {\tilde{A}^{\text{T}} F^{\text{T}} } \hfill & {\tilde{L}^{\text{T}} } \hfill & {\tilde{A}^{\text{T}} G^{\text{T}} } \hfill & {\tilde{A}^{\text{T}} P^{\text{T}} } \hfill & {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } \hfill & \ldots \hfill & {\tilde{A}^{\text{T}} \left( {P_{{k_{m}^{i} }} - P_{i} } \right)^{\text{T}} } \hfill \\ * \hfill & * \hfill & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & { - I} \hfill & 0 \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & {\theta^{\prime \prime \prime } } \hfill & 0 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & { - P_{i} } \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & { - T_{{ik_{1}^{i} }} } \hfill & \ldots \hfill & 0 \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & \ddots \hfill & \vdots \hfill \\ * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & * \hfill & { - T_{{ik_{1}^{i} }} } \hfill \\ \end{array} } \right] < 0, $$
(32)

where \( \theta^{\prime \prime } = - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{A}^{\text{T}} \sum\nolimits_{{j \in U_{k}^{i} }} {\hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right)\tilde{A}} \), \( \theta^{\prime \prime \prime } = - G\left( {\sum\nolimits_{{j \in U_{k}^{i} }} {\frac{{\delta_{ij}^{2} }}{4}T_{ij} } } \right)^{ - 1} G^{\text{T}} \).

For each \( j \in U_{k}^{i} \), it is obvious that

$$ \begin{aligned} & \left[ {\begin{array}{*{20}l} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & {\tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \left( {P_{j} - P_{i} } \right)^{\text{T}} T_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)\tilde{A}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] \\ & = - \left[ {\begin{array}{*{20}l} 0 & \cdots & 0 \\ {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } & \cdots & {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} { - T_{{ik_{1}^{i} }}^{ - 1} } & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & { - T_{{ik_{m}^{i} }}^{ - 1} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}l} 0 & \cdots & 0 \\ {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } & \cdots & {\tilde{A}^{\text{T}} \left( {P_{{k_{1}^{i} }} - P_{i} } \right)^{\text{T}} } \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \end{array} } \right]^{\text{T}} . \\ \end{aligned} $$
(33)

Then, according to Schur complement formula, it follows from (32) and (33) that

$$ \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } & {G\tilde{A}} & { - F^{\text{T}} + G\tilde{B}} & 0 & 0 & 0 \\ * & {\theta^{\prime \prime } + \tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \left( {P_{j} - P_{i} } \right)^{\text{T}} T_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)\tilde{A}} & {\tilde{A}^{\text{T}} F^{\text{T}} } & {\tilde{L}^{\text{T}} } & {\tilde{A}^{\text{T}} G^{\text{T}} } & {\tilde{A}^{\text{T}} P^{\text{T}} } \\ * & * & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} & 0 & 0 & 0 \\ * & * & * & { - I} & 0 & 0 \\ * & * & * & * & {\theta^{\prime \prime \prime } } & 0 \\ * & * & * & * & * & { - P_{i} } \\ \end{array} } \right] < 0. $$
(34)

Since \( \tilde{A}^{\text{T}} \left( {\sum\nolimits_{{j \in U_{k}^{i} }} {\frac{{\delta_{ij}^{2} }}{4}T_{ij} } } \right)\tilde{A} = \tilde{A}^{\text{T}} G^{\text{T}} G^{{ - {\text{T}}}} \left( {\sum\nolimits_{{j \in U_{k}^{i} }} {\frac{{\delta_{ij}^{2} }}{4}T_{ij} } } \right)G^{ - 1} G\tilde{A} \) and \( \tilde{A}^{\text{T}} P_{i} \tilde{A} = \tilde{A}^{\text{T}} P_{i}^{\text{T}} P_{i}^{ - 1} P_{i} \tilde{A} \) one has

$$ \begin{aligned} & \left[ {\begin{array}{*{20}l} 0 & 0 & 0 & 0 \\ 0 & {\tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} \tilde{A}} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] = - \left[ {\begin{array}{*{20}l} 0 \\ {\tilde{A}^{\text{T}} G^{\text{T}} } \\ 0 \\ 0 \\ \end{array} } \right]G^{{ - {\text{T}}}} \left( {\mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} } \right)G^{ - 1} \left[ {\begin{array}{*{20}l} 0 & {G\tilde{A}} & 0 & 0 \\ \end{array} } \right], \\ & \left[ {\begin{array}{*{20}l} 0 & 0 & 0 & 0 & 0 \\ 0 & {\tilde{A}^{\text{T}} P_{i} \tilde{A}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right] = - \left[ {\begin{array}{*{20}l} 0 \\ {\tilde{A}^{\text{T}} P_{i}^{\text{T}} } \\ 0 \\ 0 \\ 0 \\ \end{array} } \right]P_{i}^{ - 1} \left[ {\begin{array}{*{20}l} 0 & {P_{i} \tilde{A}} & 0 & 0 & 0 \\ \end{array} } \right]. \\ \end{aligned} $$
(35)

Using Schur complement formula, it follows from (34) and (35) that

$$ \left[ {\begin{array}{*{20}l} { - G - G^{\text{T}} } & {G\tilde{A}} & { - F^{\text{T}} + G\tilde{B}} & 0 \\ * & {\theta^{\prime \prime \prime \prime } } & {\tilde{A}^{\text{T}} F^{\text{T}} } & {\tilde{L}^{\text{T}} } \\ * & * & {\tilde{B}^{\text{T}} F^{\text{T}} + F\tilde{B} - \gamma^{2} I} & 0 \\ * & * & * & { - I} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}l} 0 & 0 & 0 & 0 \\ 0 & {\tilde{A}^{\text{T}} \mathop \sum \limits_{{j \in U_{k}^{i} }} \frac{{\delta_{ij}^{2} }}{4}T_{ij} \tilde{A} + \tilde{A}^{\text{T}} P_{i} \tilde{A}} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] < 0, $$
(36)

where \( \theta^{\prime \prime \prime \prime } = - \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{A}^{\text{T}} \sum\nolimits_{{j \in U_{k}^{i} }} {\hat{\pi }_{ij} \left( {P_{j} - P_{i} } \right)\tilde{A}} + \tilde{A}^{\text{T}} \sum\nolimits_{{j \in U_{k}^{i} }} {\left( {P_{j} - P_{i} } \right)^{\text{T}} T_{ij}^{ - 1} \left( {P_{j} - P_{i} } \right)} \tilde{A} \).

Inequality (24) can be rewritten as \( \tilde{A}^{\text{T}} \sum\nolimits_{j = 1}^{S} {\pi_{ij} P_{j} \tilde{A} \le \theta^{\prime \prime \prime \prime } } + \tilde{E}^{\text{T}} P_{i} \tilde{E} + \tilde{A}^{\text{T}} \sum\nolimits_{{j \in U_{k}^{i} }} {\frac{{\delta_{ij}^{2} }}{4}T_{ij} \tilde{A} + \tilde{A}^{\text{T}} P_{i} \tilde{A}} \), which implies that (36) can guarantee (8). Thus, the filtering error system (5) with GUTRs is stochastically admissible with a prescribed performance \( H_{\infty } \) index \( \gamma \) in Case I.

The proofs of Case II and Case III are similar to that of Case I, so they are omitted here.

Thus, it completes the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, A., Li, L. & Li, C. \( H_{\infty } \) Filtering for Discrete-Time Singular Markovian Jump Systems with Generally Uncertain Transition Rates. Circuits Syst Signal Process 40, 3204–3226 (2021). https://doi.org/10.1007/s00034-020-01626-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01626-0

Keywords

Navigation