Skip to main content

Advertisement

Log in

Low-Temperature Synthesis of Micro–Mesoporous TiO2–SiO2 Composite Film Containing Fe–N Co-Doped Anatase Nanocrystals for Photocatalytic NO Removal

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A simple low-temperature (< 100 °C) hot-water treatment was used to synthesize Fe–N co-doped anatase nanocrystals which were uniformly dispersed in micro–mesoporous SiO2 host film for the first time. The Fe–N co-doped TiO2–SiO2 (FNTS) film exhibited stable photocatalytic activities. A NO removal efficiency of 56.1% was achieved under simulated solar light irradiation without any obvious inactivation in 30 min. The transient photocurrent response of FNTS film is approximately six times higher than that of non-doped TiO2–SiO2 film, indicating the superior charge separation of photo-generated electron–hole pairs. Electron spin resonance analysis showed that the ·OH and ·O2 radicals were key species to remove NO. Combined with quantitative reaction intermediates, the possible photocatalytic degradation mechanism of NO over FNTS film was proposed. In addition, the FNTS thin films exhibited intrinsic super-hydrophilicity and durable self-cleaning property even after 6 months of storage in the dark. This work provides a facile method to load the catalyst on thermal labile substrates, such as soda–lime glass and organic polymer for more practical applications.

Graphic Abstract

A simple low-temperature (< 100 °C) hot-water treatment was used to synthesize micro–mesoporous TiO2–SiO2 composite film, which shows good self-cleaning ability and superior photodegradation activity for NO removal under solar light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z, Szidat S, Baltensperger U, El Haddad I, Prevot ASH (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222

    Article  CAS  PubMed  Google Scholar 

  2. Granger P, Parvulescu VI (2011) Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem Rev 111:3155–3207

    Article  CAS  PubMed  Google Scholar 

  3. Fischer SL, Koshland CP (2007) Daily and peak 1 h indoor air pollution and driving factors in a rural Chinese village. Environ Sci Technol 41:3121–3126

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y, Gao Y, Zhang Q, Zhang Y, Cao JJ, Ho W, Lee SC (2018) Biocompatible FeOOH-carbon quantum dots nanocomposites for gaseous NOx removal under visible light: improved charge separation and high selectivity. J Hazard Mater 354:54–62

    Article  CAS  PubMed  Google Scholar 

  5. Huang Y, Zhu D, Zhang Q, Zhang Y, Cao JJ, Shen Z, Ho W, Lee SC (2018) Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal. Appl Catal B Environ 234:70–78

    Article  CAS  Google Scholar 

  6. Ma JZ, He H, Liu FD (2015) Effect of Fe on the photocatalytic removal of NOx over visible light responsive Fe/TiO2 catalysts. Appl Catal B Environ 179:21–28

    Article  CAS  Google Scholar 

  7. Kubacka A, Fernandez-Garcia M, Colon G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  CAS  PubMed  Google Scholar 

  8. Cai J, Wu M, Wang Y, Zhang H, Meng M, Tian Y, Li X, Zhang J, Zheng L, Gong J (2017) Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals. Chem 2:877–892

    Article  CAS  Google Scholar 

  9. Ho W (2015) Efficient photocatalytic degradation of NO by ceramic foam air filters coated with mesoporous TiO2 thin films. Chin J Catal 36:2109–2118

    Article  CAS  Google Scholar 

  10. Patil MK, Shaikh S, Ganesh I (2015) Recent advances on TiO2 thin film based photocatalytic applications (A review). Curr Nanosci 11:271–285

    Article  CAS  Google Scholar 

  11. Varshney G, Kanel SR, Kempisty DM, Varshney V, Agrawal A, Sahle-Demessie E, Varma RS, Nadagouda MN (2016) Nanoscale TiO2 films and their application in remediation of organic pollutants. Coord Chem Rev 306:43–64

    Article  CAS  Google Scholar 

  12. Boyjoo Y, Su H, Liu J, Pareek VK, Wang S (2017) A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J 310:537–559

    Article  CAS  Google Scholar 

  13. Cao Y, Huang L, Bai Y, Jermsittiparsert K, Hosseinzadeh R, Rasoulnezhad H, Hosseinzadeh G (2020) Synergic effect of oxygen vacancy defect and shape on the photocatalytic performance of nanostructured TiO2 coating. Polyhedron 175:114214

    Article  CAS  Google Scholar 

  14. Rizzo L (2009) Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis. J Hazard Mater 165:48–51

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Zhuang H, Hinton A, Bowker JB, Zhang J (2014) Photocatalytic disinfection of spoilage bacteria pseudomonas fluorescens and macrococcus caseolyticus by nano-TiO2. LWT Food Sci Technol 59:1009–1017

    Article  CAS  Google Scholar 

  16. Liu K, Cao M, Fujishima A, Jiang L (2014) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114:10044–10094

    Article  CAS  PubMed  Google Scholar 

  17. Ragesh P, Ganesh VA, Naira SV, Nair AS (2014) A review on ‘self-cleaning and multifunctional materials.’ J Mater Chem A 2:14773–14797

    Article  CAS  Google Scholar 

  18. Allain E, Besson S, Durand C, Moreau M, Gacoin T, Boilot JP (2007) Transparent mesoporous nanocomposite films for self-cleaning applications. Adv Funct Mater 17:549–554

    Article  CAS  Google Scholar 

  19. Hosseinzadeh G, Rasoulnezhad H, Ghasemian N, Hosseinzadeh R (2019) Ultrasonic-assisted spray pyrolysis technique for synthesis of transparent S-doped TiO2 thin film. J Aust Ceram Soc 55:387–394

    Article  CAS  Google Scholar 

  20. Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A Gen 375:1–11

    Article  CAS  Google Scholar 

  21. Singh S, Mahalingam H, Singh PK (2013) Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl Catal A Gen 462:178–195

    Article  Google Scholar 

  22. Camara RM, Crespo E, Portela R, Suarez S, Bautista L, Gutierrez-Martin F, Sanchez B (2014) Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers. Catal Today 230:145–151

    Article  CAS  Google Scholar 

  23. Zita J, Maixner J, Krysa J (2010) Multilayer TiO2/SiO2 thin sol–gel films: effect of calcination temperature and Na+ diffusion. J Photochem Photobiol A Chem 216:194–200

    Article  CAS  Google Scholar 

  24. Paz Y, Heller A (1997) Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: the deleterious effect of sodium contamination and its prevention. J Mater Res 12:2759–2766

    Article  CAS  Google Scholar 

  25. Kment S, Gregora I, Kmentova H, Novotna P, Hubicka Z, Krysa J, Sajdl P, Dejneka A, Brunclikova M, Jastrabik L, Hrabovsky M (2012) Raman spectroscopy of dip-coated and spin-coated sol–gel TiO2 thin films on different types of glass substrate. J Sol-Gel Sci Technol 63:294–306

    Article  CAS  Google Scholar 

  26. Li F, Zhao N, Guan LX, Feng JJ, Yao MM (2013) Enhanced photocatalytic activities of multi-modified TiO2films on common glass substrates. Water Air Soil Pollut 224:1532

    Article  Google Scholar 

  27. Xie H, Liu B, Zhao X (2016) Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation of acetone and benzene. Chem Eng J 284:1156–1164

    Article  CAS  Google Scholar 

  28. Lorencik S, Yu QL, Brouwers HJH (2015) Design and performance evaluation of the functional coating for air purification under indoor conditions. Appl Catal B Environ 168:77–86

    Article  Google Scholar 

  29. Matsuda A, Sakai M, Kogure T, Tadanaga K, Tatsumisago M (2006) External-field hot-water treatments of sol–gel derived SiO2–TiO2 coatings for surface nanostructure control—a review. J Ceram Soc Jpn 114:26–35

    Article  CAS  Google Scholar 

  30. Kotani Y, Matoda T, Matsuda A, Kogure T, Tatsumisago M, Minami T (2001) Anatase nanocrystal-dispersed thin films via sol-gel process with hot water treatment: effects of poly(ethylene glycol) addition on photocatalytic activities of the films. J Mater Chem 11:2045–2048

    Article  CAS  Google Scholar 

  31. Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2001) Photocatalytic decomposition of acetaldehyde with anatase nanocrystals-dispersed silica films prepared by the sol–gel process with hot water treatment. J Sol-Gel Sci Technol 22:41–46

    Article  CAS  Google Scholar 

  32. Antonello A, Soliveri G, Meroni D, Cappelletti G, Ardizzone S (2014) Photocatalytic remediation of indoor pollution by transparent TiO2 films. Catal Today 230:35–40

    Article  CAS  Google Scholar 

  33. Kassir M, Roques-Carmes T, Hamieh T, Toufaily J, Akil M, Barres O, Villieras F (2015) Improvement of the photocatalytic activity of TiO2 induced by organic pollutant enrichment at the surface of the organografted catalyst. Colloid Surf A 485:73–83

    Article  CAS  Google Scholar 

  34. Dong W, Sun Y, Hua W, Yao Y, Zhuang G, Lv X, Ma Q, Zhao D (2016) Preparation of secondary mesopores in mesoporous anatase-silica nanocomposites with unprecedented-high photocatalytic degradation performances. Adv Funct Mater 26:964–976

    Article  CAS  Google Scholar 

  35. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176:396–428

    Article  Google Scholar 

  36. Fujishima A, Zhang XT (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9:750–760

    Article  CAS  Google Scholar 

  37. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134:6751–6761

    Article  CAS  PubMed  Google Scholar 

  38. Kumar SG, Rao K (2014) Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale 6:11574–11632

    Article  CAS  PubMed  Google Scholar 

  39. Wang CY, Bottcher C, Bahnemann DW, Dohrmann JK (2003) A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. J Mater Chem 13:2322–2329

    Article  CAS  Google Scholar 

  40. Zhou MH, Yu JG, Cheng B, Yu HG (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater Chem Phys 93:159–163

    Article  CAS  Google Scholar 

  41. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  PubMed  Google Scholar 

  42. Armelao L, Colombo P, Granozzi G, Guglielmi M (1992) SiO2–TiO2 sol–gel coatings—a surface study by X-ray photoelectron-spectroscopy. J Non-Cryst Solids 139:198–204

    Article  CAS  Google Scholar 

  43. Hao HY, Zhang JL (2009) The study of Iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts: synthesis, characterization and activity. Microporous Mesoporous Mater 121:52–57

    Article  CAS  Google Scholar 

  44. Tong TZ, Zhang JL, Tian BZ, Chen F, He DN (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155:572–579

    Article  CAS  PubMed  Google Scholar 

  45. Egerton TA, Harris E, Lawson EJ, Mile B, Rowlands CC (2001) An EPR study of diffusion of iron into rutile. Phys Chem Chem Phys 3:497–504

    Article  CAS  Google Scholar 

  46. Chen CC, Hu SH, Fu YP (2015) Effects of surface hydroxyl group density on the photocatalytic activity of Fe3+-doped TiO2. J Alloys Compd 632:326–334

    Article  CAS  Google Scholar 

  47. Gratzel M, Howe RF (1990) Electron-paramagnetic resonance studies of doped TiO2 colloids. J Phys Chem 94:2566–2572

    Article  Google Scholar 

  48. Huang TZ, Mao S, Yu JM, Wen ZH, Lu GH, Chen JH (2013) Effects of N and F doping on structure and photocatalytic properties of anatase TiO2 nanoparticles. RSC Adv 3:16657–16664

    Article  CAS  Google Scholar 

  49. Wu YC, Ju LS (2014) Annealing-free synthesis of C-N co-doped TiO2 hierarchical spheres by using amine agents via microwave-assisted solvothermal method and their photocatalytic activities. J Alloys Compd 604:164–170

    Article  CAS  Google Scholar 

  50. Rasoulnezhad H, Hosseinzadeh G, Hosseinzadeh R, Ghasemian N (2018) Preparation of transparent nanostructured N-doped TiO2 thin films by combination of sonochemical and CVD methods with visible light photocatalytic activity. J Adv Ceram 7:185–196

    Article  CAS  Google Scholar 

  51. Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128:15666–15671

    Article  CAS  PubMed  Google Scholar 

  52. Chen XB, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449

    Article  CAS  Google Scholar 

  53. Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852

    Article  CAS  PubMed  Google Scholar 

  54. Hanna R (1965) Infrared absorption spectrum of silicon dioxide. J Am Ceram Soc 48:595–599

    Article  CAS  Google Scholar 

  55. Matsuda A, Kogure T, Matsuno Y, Katayama S, Tsuno T, Tohge N, Minami T (1993) Structural-changes of sol gel-derived TiO2–SiO2 coatings in an environment of high-temperature and high humidity. J Am Ceram Soc 76:2899–2903

    Article  CAS  Google Scholar 

  56. Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2000) Transparent anatase nanocomposite films by the sol–gel process at low temperatures. J Am Ceram Soc 83:229–231

    Article  CAS  Google Scholar 

  57. Mukherjee SP (1980) Sol–gel processes in glass science and technology. J Non-Cryst Solids 42:477–488

    Article  CAS  Google Scholar 

  58. Morikawa H, Osuka T, Marumo F, Yasumori A, Yamane M, Momura M (1986) Changes in Ti coordination-number during pyrolysis of a SiO2–TiO2 gel. J Non-Cryst Solids 82:97–102

    Article  CAS  Google Scholar 

  59. Ryu ZY, Zheng JT, Wang MZ (1998) Porous structure of PAN-based activated carbon fibers. Carbon 36:427–432

    Article  CAS  Google Scholar 

  60. Wang Y, Cao YL, Li YZ, Jia DZ, Xie JJ (2014) Directed synthesis of TiO2 nanorods and their photocatalytic activity. Ceram Int 40:11735–11742

    Article  CAS  Google Scholar 

  61. Cebeci FC, Wu ZZ, Zhai L, Cohen RE, Rubner MF (2006) Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir 22:2856–2862

    Article  CAS  PubMed  Google Scholar 

  62. Kim TH, Rodriguez-Gonzalez V, Gyawali G, Cho SH, Sekino T, Lee SW (2013) Synthesis of solar light responsive Fe, N co-doped TiO2 photocatalyst by sonochemical method. Catal Today 212:75–80

    Article  CAS  Google Scholar 

  63. Cao X, Liu C, Hu YD, Yang WL, Chen JW (2016) Synthesis of N/Fe comodified TiO2loaded on bentonite for enhanced photocatalytic activity under UV-Vis light. J Nanomater 2016:1–11

    Article  CAS  Google Scholar 

  64. Karvinen S, Hirva P, Pakkanen TA (2003) Ab initio quantum chemical studies of cluster models for doped anatase and rutile TiO2. J Mol Struct Theochem 626:271–277

    Article  CAS  Google Scholar 

  65. Rasoulnezhad H, Hosseinzadeh G, Ghasemian N, Hosseinzadeh R, Keihan AH (2018) Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique. Mater Res Express 5:056401

    Article  Google Scholar 

  66. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles-size quantization or direct transitions in this indirect semiconductor. J Phys Chem 99:16646–16654

    Article  CAS  Google Scholar 

  67. Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52:3621–3625

    Article  CAS  Google Scholar 

  68. Duan Y, Zhang M, Wang L, Wang F, Yang L, Li X, Wang C (2017) Plasmonic Ag-TiO2-X nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: the role of oxygen vacancies. Appl Catal B Environ 204:67–77

    Article  CAS  Google Scholar 

  69. Zhao W, Feng LL, Yang R, Zheng J, Li XG (2011) Synthesis, characterization, and photocatalytic properties of Ag modified hollow SiO2/TiO2 hybrid microspheres. Appl Catal B Environ 103:181–189

    Article  CAS  Google Scholar 

  70. Ai ZH, Ho WK, Lee SC, Zhang LZ (2009) Effcient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ Sci Technol 43:4143–4150

    Article  CAS  PubMed  Google Scholar 

  71. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  72. Patzsch J, Spencer JN, Folli A, Bloh JZ (2018) Grafted iron(III) ions significantly enhance NO2 oxidation rate and selectivity of TiO2 for photocatalytic NOx abatement. RSC Adv 8:27674–27685

    Article  CAS  Google Scholar 

  73. Patzsch J, Folli A, Macphee DC, Bloh JZ (2017) On underlying mechanisms of the low observed nitrate selectivity in photocatalytic NOx abatement and the importance of the oxygen reduction reaction. Phys Chem Chem Phys 19:32678–32686

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Science Foundation of China (No. 51702336), the Zhejiang Provincial Natural Science Foundation of China (No. LD19E020001, No. LY18E020012), and the Ningbo Natural Science Foundation of China (No. 2018A610019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dewei Ma or Fei Zhuge.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2452 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Zhang, L., Ma, D. et al. Low-Temperature Synthesis of Micro–Mesoporous TiO2–SiO2 Composite Film Containing Fe–N Co-Doped Anatase Nanocrystals for Photocatalytic NO Removal. Catal Lett 151, 2396–2407 (2021). https://doi.org/10.1007/s10562-020-03466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03466-8

Keywords

Navigation